PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Weather routing system architecture using onboard data collection and route optimisation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes the architecture of a weather routing system consisting of two key elements: onboard monitoring and route optimiser sub-systems. The former is responsible for collecting various onboard measurements, such as current ship position or ship motion variables. These data, when gathered and processed, are then used for fine-tuning a ship model. The model, together with weather forecasts, is utilised by a multi-objective route optimiser to estimate forecasted ship responses during the voyage. The route optimiser has been developed in a client-server architecture to reallocate all necessary high-tech resources to the server side and keep the client software as simple and light as possible. The system also includes a module responsible for optimising transmission costs, to reduce onboard transmission during the voyage. The entire solution has been deployed onboard the demonstrator ship ‘Monte da Guia’ and tested during its operations at sea.
Rocznik
Tom
Strony
87--95
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Gdynia Maritime University, Faculty of Navigation Poland
  • Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa Portugal
  • Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology Poland
  • Gdynia Maritime University, Faculty of Navigation Poland
  • Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology Poland
  • Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa Portugal
  • Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa Portugal
  • NavSim sp. z .o.o, Poland Poland
  • Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa Portugal
Bibliografia
  • 1. R. W. James, Application of wave forecast to marine navigation. US Naval Oceanograph, 1957.
  • 2. H. Hagiwara and J. A. Spaans, “Practical Weather Routing of Sail-assisted Motor Vessels,” J. Navig., vol. 40, no. 01, pp. 96–119, Jan. 1987, doi: 10.1017/S0373463300000333.
  • 3. C. Chen, S. Shiotani, and K. Sasa, “Numerical ship navigation based on weather and ocean simulation,” Ocean Eng., vol. 69, pp. 44–53, 2013, doi: 10.1016/j.oceaneng.2013.05.019.
  • 4. W. Shao, P. Zhou, and S. K. Thong, “Development of a novel forward dynamic programming method for weather routing,” J. Mar. Sci. Technol., vol. 17, no. 2, pp. 239–251, 2012, doi: 10.1007/s00773-011-0152-z.
  • 5. R. Zaccone, E. Ottaviani, M. Figari, and M. Altosole, “Ship voyage optimisation for safe and energy-efficient navigation: A dynamic programming approach,” Ocean Eng., vol. 153, pp. 215–224, 2018, doi: 10.1016/j.oceaneng.2018.01.100.
  • 6. G. Mannarini, G. Coppini, P. Oddo, and N. Pinardi, “A Prototype of Ship Routing Decision Support System for an Operational Oceanographic Service,” TransNav, Int. J. Mar. Navig. Saf. Sea Transp., vol. 7, no. 1, pp. 53–59, 2013, doi: 10.12716/1001.07.01.06.
  • 7. G. Mannarini, L. Carelli, J. Orović, C. P. Martinkus, and G. Coppini, “Towards least-CO2 ferry routes in the Adriatic sea,” J. Mar. Sci. Eng., vol. 9, no. 2, pp. 1–15, 2021, doi: 10.3390/ jmse9020115.
  • 8. M. Zyczkowski, P. Krata, and R. Szłapczyński, “Multi-objective weather routing of sailboats considering wave resistance,” Polish Marit. Res., vol. 25, no. 1, pp. 4–12, 2018, doi: 10.2478/pomr-2018-0001.
  • 9. M. Zyczkowski and R. Szłapczyński, “Multi-Objective Weather Routing of Sailing Vessels,” Polish Marit. Res., vol. 24, no. 4, 2017, doi: 10.1515/pomr-2017-0130.
  • 10. M.-C. Tsou, “Integration of a Geographic Information System and Evolutionary Computation for Automatic Routing in Coastal Navigation,” J. Navig., vol. 63, no. 02, pp. 323–341, 2010, doi: 10.1017/S0373463309990385.
  • 11. L. Skoglund, J. Kuttenkeuler, and A. Rosén, “A new method for robust route optimisation in ensemble weather forecasts,” 2012.
  • 12. J. Hinnenthal and G. Clauss, “Robust Pareto-optimum routing of ships utilising deterministic and ensemble weather forecasts,” Ships Offshore Struct., vol. 5, no. 2, pp. 105–114, 2010, doi: 10.1080/17445300903210988.
  • 13. J. Szłapczyńska, “Multi-objective Weather Routing with Customised Criteria and Constraints,” J. Navig., vol. 68, pp. 338–354, 2015, doi: 10.1017/S0373463314000691.
  • 14. R. Vettor and C. Guedes Soares, “Development of a ship weather routing system,” Ocean Eng., vol. 123, no. January 2018, pp. 1–14, 2016, doi: 10.1016/j.oceaneng.2016.06.035.
  • 15. R. Vettor, J. Szlapczynska, R. Szlapczynski, W. Tycholiz, and C. Guedes Soares, “Towards Improving Optimised Ship Weather Routing,” Polish Marit. Res., vol. 27, no. 1, pp. 60–69, Mar. 2020, doi: 10.2478/pomr-2020-0007.
  • 16. W. Kazimierski and N. Wawrzyniak, “Exchange of navigational information between VTS and RIS for inland shipping user needs,” Commun. Comput. Inf. Sci., vol. 471, pp. 294–303, 2014, doi: 10.1007/978-3-662-45317-9_31.
  • 17. Y. Zhang, A. Zhang, D. Zhang, Z. Kang, and Y. Liang, “Design and Development of Maritime Data Security Management Platform,” Appl. Sci., vol. 12, no. 2, 2022, doi: 10.3390/ app12020800.
  • 18. M. A. Hinostroza and C. Guedes Soares, “Parametric estimation of the directional wave spectrum from ship motions,” Trans. R. Inst. Nav. Archit. Part A Int. J. Marit. Eng., vol. 158, no. December, pp. A121–A130, 2016, doi: 10.3940/ rina.2016.a2.356.
  • 19. Davis, “Wireless Vantage Pro2 & Vantage Pro2 Plus Stations (6152,6153,6162,6163),” vol. 2. 2010, [Online]. Available: http://www.weathershop.com/Specs/6152-62-53-63_ VP2Spec_C.pdf.
  • 20. Davis, “Integrated Sensor Suite.” [Online]. Available:https:// cdn.shopify.com/s/files/1/0515/5992/3873/files/07395-333_ IM-6322C-6334.pdf.
  • 21. Davis, “WEATHER LINK Software User’s Guide.” [Online]. Available: http://www.davis-tr.com/Downloads/WeatherLink_ for_Windows_4.0_7862_Instruction_Manual.pdf.
  • 22. Katronic, “KATflow 100 Standard Clamp-On Ultrasonic Flow Transmitter,” 2018. http://www.em-solutions.co.uk/ upload/product/pdf/1420207860katflow 100 cost effective clamp-on flow meter.pdf.
  • 23. Four-Faith, “Four-Faith. F8L10T – LoRa Terminal.” pp. 10–12, [Online]. Available: https://en.four-faith.com/ uploadfile/2018/0913/20180913113549104.pdf.
  • 24. Four-Faith, “F8936-L Series Router User Manual.” https://en.four-faith.com/uploadfile/2017/0309/ 20170309105843459.pdf.
  • 25. RockTest, “Vibrating Wire Surface Strain Gauge (Model SM-5A), RockTest Instruction Manual,” 2005, [Online]. Available: https://smartec.ch/wp-content/uploads/ sites/2/2017/01/SM-5-Manual.pdf.
  • 26. RockTest, “RT-VLOG - VW Datalogger,” [Online]. Available: https://roctest.com/wp-content/uploads/2017/01/E50374- 160815-RT-VLOG.pdf.
  • 27. RockTest, “RT-VLOG, Instruction Manual.” 2009, [Online]. Available: https://roctest.com/wp-content/uploads/2017/01/ RT-VLOG_E1374-180514-1.pdf.
  • 28. Q. Zhang and H. Li, “MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, Dec. 2007, doi: 10.1109/TEVC.2007.892759.
  • 29. R. Szlapczynski and J. Szlapczynska, “W-dominance: Tradeoff-inspired dominance relation for preference-based evolutionary multi-objective optimisation,” Swarm Evol. Comput., vol. 63, no. March 2020, p. 100866, 2021, doi: 10.1016/j.swevo.2021.100866.
  • 30. P. Krata, A. Kniat, R. Vettor, H. Krata, and C. Guedes Soares, “The Development of a Combined Method to Quickly Assess Ship Speed and Fuel Consumption at Different Powertrain Load and Sea Conditions,” TransNav, Int. J. Mar. Navig. Saf. Sea Transp., vol. 15, no. 2, pp. 437–444, 2021, doi: 10.12716/1001.15.02.23.
  • 31. L. Moreira, R. Vettor, and C. Guedes Soares, “Neural network approach for predicting ship speed and fuel consumption,” J. Mar. Sci. Eng., vol. 9, no. 2, pp. 1–14, 2021, doi: 10.3390/ jmse9020119.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b4f815e-a721-4002-9aab-9c37649cae89
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.