PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis, characterization, DC-electrical conductivity and γ-ray effect on Ag1+, Y3+ double doped nano lithium manganates (LiMn2−2x Ag x Y x O4) for rechargeable batteries

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pristine lithium manganate (LiMn2O4) and Ag1+, Y3+ double doped nano lithium manganate [LiMn2−2x Ag x Y x O4, (x = 0.025, 0.05)] spinels were synthesized via a coprecipitation method for rechargeable batteries applications. The synthesized LiMn1.9Ag0.05Y0.05O4 was exposed to different doses of γ-irradiation (10 and 30 kGy). The resulting spinel products were characterized by using thermogravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-rays (EDAX), electronic (UV-Vis) and electron spin resonance (ESR) spectra. LiMn2O4 exhibited a discharge capacity of 124 mAhg−1 while LiMn1.9Ag0.05Y0.05O4 had discharge capacities of 129 and 137 mAhg−1 for non irradiated and γ-irradiated (30 kGy) samples, respectively. The effects of the dopant cations and γ-irradiation on the discharge capacity and DC-electrical conductivity of some synthesized spinels were studied.
Wydawca
Rocznik
Strony
315--323
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
autor
  • Chemistry Department, College of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
  • Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
  • Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
autor
  • Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
  • Chemistry Department, College of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
Bibliografia
  • [1] TARASCON J.M., ARMAND M., Nature, 414 (2001), 359.
  • [2] GOUA D., CHANGA Z., TANGA H., LIA B., XUA X., YUANB X., WANGB H., Electrochim. Acta, 123 (2014), 254.
  • [3] TARASCON J.M., MCKINNON W.R., COOWAR F., BOWNER T.N., AMATUCCI G., GUYOMARD D.J., J. Electrochem. Soc., 141 (1994), 1431.
  • [4] GUMMOW R.J., KOCK DE A., THACKERAY M.M., Solid State Ionics, 69 (1994), 67.
  • [5] THACKERAY M.M., KOCK DE A., ROSSOUW M.H., LILES D., BITTIHN R., HOGE D., J. Electrochem. Soc., 139 (1992), 366.
  • [6] XIA Y., YOSHIO M., J. Electrochem. Soc., 144 (1997), 2600.
  • [7] PISTOIA G., ANTONINI A., ROSATI R., ZANE D., Electrochim. Acta, 41 (1996), 2689.
  • [8] JANG D.H., SHIN J., OH S.M., J. Electrochem. Soc., 143 (1996), 2211.
  • [9] YAMADA A., J. Solid State Chem., 122 (1996), 165.
  • [10] OHUZUKU T., TAKEDA S., IWANAGA M., J. Power Sources, 90 (1999), 82.
  • [11] SONG D., IKUTA H., UCHIDA T., WAKIHARA M., Solid State Ionics, 117 (1999), 156.
  • [12] KHEDR A.M., ABOU-SEKKINA M.M., EL-METWALY F.G., J. Electron. Mater., 42 (2013), 1275.
  • [13] JAVEDIQBAL M., ZAHOOR S., J. Power Sources, 165 (2007), 397.
  • [14] ABOU-SEKKINA M.M., KHEDR A.M., EL-METWALY F.G., Chem. Mater. Res., 3 (2013), 15.
  • [15] KUMAR G., SCHLORB H. AND RAHNER D., Mater. Chem. Phys., 70 (2001), 123.
  • [16] SAAD F.A., ABOU-SEKKINA M.M., KHEDR A.M., EL-METWALY F.G., Int. J. Electrochem. Sc., 9 (2014), 3904.
  • [17] LEE J.H., HONG J.K., JANG D.H., SUN Y.K., OH S.M., J. Power Sources, 89 (2000), 714.
  • [18] TU J., ZHAO X.B., CAO G.S., TU J.P., ZHU T.J., Mater. Lett., 59 (2005), 2886.
  • [19] ROUGIER C.J., NAZRI G.A., JULIEN C., Mater. Res. Soc. Symp. Proc., 453 (1997), 647.
  • [20] ROUGIER C.J., NAZRI G.A., JULIEN C., Ionics, 3 (1997), 170.
  • [21] RICHARDSON T.J., ROSS P.N., Mater. Res. Bull., 31 (1996), 935.
  • [22] CHITRA S., KALYANI P., MOHAN T., MASSOT M., ZIOLKIEWICZ S., GANGADHARAN R., EDDRIEF M., JULIEN C., Ionics, 4 (1998), 1.
  • [23] HELAN M., BERCHMAN L., JOSE T., VISUVASAM A., ANGAPPAN S., Mater. Chem. Phys., 124 (2010), 439.
  • [24] XIONG L., XU Y., TAO T., GOODENOUGH J.B., J. Power Sources, 199 (2012), 214.
  • [25] THIRUNAKARAN R., SIVASHANMUGAM A., GOPUKUMAR S., RAJALAKSHMI R., J. Power Sources, 187 (2009), 565.
  • [26] THIRUNAKARAN R., RAVIKUMAR R., GOPUKUMAR S., SIVASHANMUGAM A., J. Alloy Comp., 556 (2013), 266.
  • [27] GOODENOUGH J.B., KIM Y., Chem. Mater., 22 (2010), 587.
  • [28] LIU D., HAN J., DONTIGNY M., CHAREST P., GUERFI A., ZAGHIB K., GOODENOUGH J.B., J. Electrochem. Soc., 157 (2010), 770.
  • [29] GOODENOUGH J.B., Oxides cathodes. In Advances in Lithium-Ion Batteries, Kluwer Academic/Plenum, New York, 2002.
  • [30] MANTHIRAM A., Chemical and Structural Stabilities of Layered Oxide Cathodes. In New Trends in Intercalation Compounds for Energy Storage, NATO Science Series, Kluwer Academic Publishers, Dordrecht, 2002.
  • [31] JULIEN C.M., MAUGER A., ZAGHIB K., GROULT H., Inorganics, 2 (2014), 132.
  • [32] LIU D., HAMEL-PAQUET J., TROTTIER J., BARRAY F., GARIEPY V., HOVINGTON P., GUERFI A., MAUGER A., JULIEN C.M., GOODENOUGH J.B., J. Power Sources, 217 (2012), 400.
  • [33] RAMAN R., MURTHY V.R.K., VISWANATHAN B., J. Appl. Phys., 69 (1991), 4053.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b4e7535-c2ee-4555-8235-8f6c18daa42d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.