PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of the material’s stiffness on stress-shielding in osseointegrated implants for bone-anchored prostheses: a numerical analysis and initial benchmark data

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study attempted to establish the link between design of implants for bone-anchored prostheses and stress-shielding, affecting the stability of the bone-implant coupling using numerical approach. The objectives were to share a numerical model capable to evaluate the long-term stability of implants and to use this model to extract data sets showing how shape and material stiffness of threaded, press-fit and modular press-fit implants affect stress-shielding intensity. Methods: Three designs were considered: threaded, press-fit and modular press-fit. The effect of shape and material stiffness of each design on stress-shielding intensity was assessed using Young’s modulus (10 to 210 GPa). Furthermore, the impact of the diameter of percutaneous part (10 to 18 mm) and thickness of medullar part (5 to 1 mm) was investigated for the modular press-fit implant. Results: The threaded design generated 4% more bone mass loss at the distal femur but an overall loss of bone mass was by 5% lower to press-fit design. The influence of Young’s modulus on bone mass changes was noticeable for modular press-fit implant, depending on diameter of percutaneous or medullary part. A 20 GPa change of stiffness caused a bone mass change from 0.65% up to 2.45% and from 0.07% up to 0.32% for percutaneous parts with 18 mm and 10 mm diameter, respectively. Conclusions: Results suggested that threaded implant provides greater stability despite an increased bone loss at the distal femur. Altogether, this work provided an initial model that could be applied in subsequent studies on the long-term stability of current and upcoming implants.
Rocznik
Strony
69--81
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
Bibliografia
  • [1] ABD RAZAK N.A., ABU OSMAN N.A., ALI S., GHOLIZADEH H., WAN ABAS W.A.B., Comparison study of the prosthetics interface pressure profile of air splint socket and ICRC polypropylene socket for upper limb prosthetics, Biocybern. Biomed. Eng., 2015, 35 (2), 100–105.
  • [2] ATALLAH R., LEIJENDEKKERS R.A., HOOGEBOOM T.J., FROLKE J.P., Complications of bone-anchored prostheses for individuals with an extremity amputation: A systematic review, PloS One, 2018, 13 (8), e0201821.
  • [3] BRÅNEMARK R., BERLIN O., HAGBERG K., BERGH P., GUNTERBERG B., RYDEVIK B., A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: A prospective study of 51 patients, Bone Joint J., 2014, 96-B (1), 106–113.
  • [4] CARTER D.R., HAYES W.C., The compressive behavior of bone as a two-phase porous structure, J. Bone Joint Surg. Am., 1977, 59, 954–962.
  • [5] FROSSARD L., HÄGGSTRÖM E., HAGBERG K., BRÅNEMARK R., Load applied on bone-anchored transfemoral prosthesis: characterization of a prosthesis – a pilot study, J. Rehabil. Res. Dev., 2013, 50 (5), 619–634.
  • [6] FROSSARD L., LEECH B., PITKIN M., Automated characterization of anthropomorphicity of prosthetic feet fitted to boneanchored transtibial prosthesis, IEEE Trans. Biomed. Eng., 2019, 66 (12), 3402–3410.
  • [7] FROSSARD L., LEECH B., PITKIN M., Inter-participant variability data in characterization of anthropomorphicity of prosthetic feet fitted to bone-anchored transtibial prosthesis, Data Brief, 2019, 25, 104195.
  • [8] HAGBERG K., BRÅNEMARK R., GUNTERBERG B., RYDEVIK B., Osseointegrated trans-femoral amputation prostheses: prospective results of general and condition-specific quality of life in 18 patients at 2-year follow-up, Prosthet. Orthot. Int., 2008, 32 (1), 29–41.
  • [9] HAKET L.M., FRÖLKE J.P.M., VERDONSCHOT N., TOMASZEWSKI P.K., VAN DE MEENT H., Periprosthetic cortical bone remodeling in patients with an osseointegrated leg prosthesis, J. Orthop. Res., 2017, 35 (6), 1237–1241.
  • [10] HEBERT J.S., REHANI M., STIEGELMAR R., Osseointegration for Lower-Limb Amputation: A Systematic Review of Clinical Outcomes, JBJS Rev., 2017, 5 (10), e10.
  • [11] JUHNKE D.L., BECK J.P., JEYAPALINA S., ASCHOFF H.H., Fifteen years of experience with Integral-Leg-Prosthesis: Cohort study of artificial limb attachment system, J. Rehabil. Res. Dev., 2015, 52 (4), 407–420.
  • [12] KHEMKA A., FROSSARD L., LORD S.J., BOSLEY B., AL MUDERIS M., Osseointegrated total knee replacement connected to a lower limb prosthesis: 4 cases, Acta Orthop., 2015, 86 (6), 740–744.
  • [13] LEE W.C., FROSSARD L., HAGBERG K., HAGGSTROM E., BRÅNEMARK R., EVANS J.H., PEARCY M.J., Kinetics of transfemoral amputees with osseointegrated fixation performing common activities of daily living, Clin. Biomech., 2007, 22 (6), 665–673.
  • [14] LEE W.C., FROSSARD L., HAGBERG K., HAGGSTROM E., GOW D.L., GRAY S., BRÅNEMARK R., Magnitude and variability of loading on the osseointegrated implant of transfemoral amputees during walking, Med. Eng. Phys., 2008, 30(7):825-833.
  • [15] LEIJENDEKKERS R.A., VAN HINTE G., FRÖLKE J.P., VAN DE MEENT H., ATSMA F., NIJHUIS-VAN DER SANDEN M.W., HOOGEBOOM T.J., Functional performance and safety of bone-anchored prostheses in persons with a transfemoral or transtibial amputation: a prospective one-year follow-up cohort study, Clin. Rehab., 2019, 33 (3), 450–464.
  • [16] MARTÍNEZ-REINA J., OJEDA J., MAYO J., On the Use of Bone Remodelling Models to Estimate the Density Distribution of Bones. Uniqueness of the Solution, PLoS One, 2016, 11 (2), e0148603.
  • [17] NEBERGALL A., BRAGDON C., ANTONELLIS A., KÄRRHOLM J., BRÅNEMARK R., MALCHAU H., Stable fixation of an osseointegated implant system for above-the-knee amputees: titel RSA and radiographic evaluation of migration and bone remodeling in 55 cases, Acta Orthop., 2012, 83 (2), 121–128.
  • [18] NEWCOMBE L., DEWAR M., BLUNN G.W., FROMME P., Effect of amputation level on the stress transferred to the femur by an artificial limb directly attached to the bone, Med. Eng. Phys., 2013, 35 (12), 1744–1753.
  • [19] NIINOMI M., Recent metallic materials for biomedical applications, Metall. Trans A., 2002, 33, 477–486.
  • [20] PITKIN M., Design features of implants for direct skeletal attachment of limb prostheses, J. Biomed. Mater Res. A., 2013, 101, 3339–3348.
  • [21] PITKIN M,, CASSIDY C., MUPPAVARAPU R., EDELL D., Recording of electric signal passing through a pylon in direct skeletal attachment of leg prostheses with neuromuscular control, IEEE Trans. Biomed. Eng., 2012, 59 (5)–1349–1353.
  • [22] PROCHOR P., PISZCZATOWSKI S., SAJEWICZ E., Biomechanical Evaluation of a novel Limb Prosthesis Osseointegrated Fixation System designed to combine the advantages of interference-fit and threaded solutions, Acta Bioeng. Biomech., 2016, 18 (4), 21–31.
  • [23] PROCHOR P., SAJEWICZ E., A comparative analysis of internal bone remodelling concepts in a novel implant for direct skeletal attachment of limb prosthesis evaluation: A finite element analysis, Proc. Inst. Mech. Eng. H., 2018, 232 (3), 289–298.
  • [24] STENLUND P., TROBOS M., LAUSMAA J., BRÅNEMARK R., THOMSEN P., PALMQUIST A., Effect of load on the bone around bone-anchored amputation prostheses, J. Orthop. Res., 2017, 35 (5), 1113–1122.
  • [25] TOMASZEWSKI P.K., VERDONSCHOT N., BULSTRA S.K., RIETMAN J.S., VERKERKE G.J., Simulated bone remodeling around two types of osseointegrated implants for direct fixation of upper-leg prostheses, J. Mech. Behav. Biomed. Mater., 2012, 15, 167–175.
  • [26] VAN ECK C.F., MCGOUGH R.L., Clinical outcome of osseointegrated prostheses for lower extremity amputations: a systematic review of the literature, Curr. Orthop. Pract., 2015, 26 (4), 349–357.
  • [27] VERTRIEST S., COOREVITS P., HAGBERG K., BRÅNEMARK R., HÄGGSTRÖM E., VANDERSTRAETEN G., FROSSARD L., Static load bearing exercises of individuals with transfemoral amputation fitted with an osseointegrated implant: reliability of kinetic data, IEEE Trans. Neural Syst. Rehabil. Eng., 2015, 23 (3), 423–430.
  • [28] XU W., ROBINSON K., X-ray image review of the bone remodeling around an osseointegrated trans-femoral implant and a finite element simulation case study, Ann. Biomed. Eng., 2008, 36 (3), 435–443.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b4be5cf-44da-47e6-b500-b3cf43b6f916
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.