PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Big Data Mining Approach For Finding Top Rated URL

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Finding out the widely used URL’s from online shopping sites for any particular category is a difficult task as there are many heterogeneous and multi-dimensional data set which depends on various factors. Traditional data mining methods are limited to homogenous data source, so they fail to sufficiently consider the characteristics of heterogeneous data. This paper presents a consistent Big Data mining search which performs analytics on text data to find the top rated URL’s. Though many heuristic search methods are available, our proposed method solves the problem of searching compared with traditional methods in data mining. The sample results are obtained in optimal time and are compared with other methods which is effective and efficient.
Słowa kluczowe
Rocznik
Strony
17--32
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Assistant Professor, Dept. Of CSE, SCSVMV University
  • Associate Professor, Dept. Of IT, SCSVMV University
  • IV-B.E.(CSE), SCSVMV University
Bibliografia
  • 1. InformationExtraction-http://en.wikipedia.org/wiki/Information_extraction.
  • 2. Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates, 2005, Unsupervised Named-Entity Extraction from the Web: An Experimental Study, University of Washington Seattle, WA 98195-2350
  • 3. Hearst and Pedersen, 1996, M. A. Hearst and J. O. Pedersen. Reexamining the cluster hypothesis: Scatter/gather on retrieval results. In Proceedings of SIGIR, pages 76–84
  • 4. Xindong Wu, Xingquan Zhu, Gong-Qing Wu, and Wei Ding, Data Mining with Big Data, Ieee Transactions On Knowledge And Data Engineering, 2014, Vol. 26, No. 1, pp. 97-107
  • 5. C.T. Chu, S.K. Kim, Y.A. Lin, Y. Yu, G.R. Bradski, A.Y. Ng, and K. Olukotun, 2006, Map-Reduce for Machine Learning on Multicore, Proc. 20th Ann. Conf. Neural Information Processing Systems (NIPS ’06), pp. 281-288
  • 6. Ron Bekkerman, Shlomo Zilberstein, James Allan-Web Page Clustering using Heuristic Search in the Web Graph, IJCAI'07, Proceedings of the 20th international joint conference on Artifical intelligence, pp. 2280-2285.
  • 7. J. Zhu, H. Wang, B. K. Tsou, and M. Zhu, 2009, Multi-aspect opinion polling from textual reviews, in Proc. 18th ACM Conf. Inf. Knowl. Manage., Hong Kong, pp. 1799–1802
  • 8. Kang Liu, Liheng Xu, and Jun Zhao, 2015, Co-Extracting Opinion Targets and Opinion Words from Online Reviews Based on the Word Alignment Model, IEEE Transactions On Knowledge And Data Engineering, Vol. 27, No. 3, pp.636-650
  • 9. P. D. Turney, 2001, Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL, In Proceedings of the Twelfth European Conference on Machine Learning, pages 491–502, Freiburg, Germany
  • 10. Ahmed, A.M., Bakar, A.A.; Hamdan, A.R., 2011, Harmony Search algorithm for optimal word size in symbolic time series representation, DMO, pp. 57 – 62.
  • 11. Sungjick Lee, Han-joon Kim, 2008, News Keyword Extraction for Topic Tracking, NCM, Vol. 2, pp. 554 – 559.
  • 12. X. Wu and S. Zhang, 2003, Synthesizing High-Frequency Rules from Different Data Sources, IEEE Trans. Knowledge and Data Eng.,vol. 15, no. 2, pp. 353- 367
  • 13. http://books.google.com/ngrams/datasets
  • 14. K. W. Gan and P. W. Wong, 2000, Annotating information structures in chinese texts using hownet, in Proc. 2nd Workshop Chin. Lang. Process.: Held Conjunction 38th Annu. Meeting Assoc. Comput. Linguistics, Hong Kong, pp. 85–92
  • 15. http://sentiwordnet.isti.cnr.it/
  • 16. http://www.keenage.com/html/c_index.html
  • 17. M. Hu and B. Liu, 2004, Mining opinion features in customer reviews, in Proc. 19th Nat. Conf. Artif. Intell., San Jose, CA, USA, pp. 755–760.
  • 18. G. Qiu, L. Bing, J. Bu, and C. Chen, 2011, Opinion word expansion and target extraction through double propagation, Comput. Linguistics, vol. 37, no. 1, pp. 9–27
  • 19. http://nlp.stanford.edu/software/tagger.shtml
  • 20. Lancichinetti, A., Fortunato, S., Radicchi, F., 2008, Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110
  • 21. Songchang Jin, Wangqun Lin, Hong Yin, Shuqiang Yang, Aiping Li,Bo Deng, 2015, Community structure mining in big data social media networks with MapReduce, Cluster Comput DOI 10.1007/s10586-015-0452-x,Springer
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b463cdf-7d19-45b4-befa-59169d5d6308
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.