PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Scattering of electromagnetic waves by plasma layer sandwiched between two layers of thin glass

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Rozpraszanie fal elektromagnetycznych przez warstwę plazmy umieszczoną między dwiema warstwami cienkiego szkła
Języki publikacji
EN
Abstrakty
EN
A technique for monitoring plasma parameters for antenna measurements using a model of low-pressure fluorescent lamps is studied. The physical parameters of the plasma in the layout were obtained using microwave interferometry measurements. Using an accurate analytical model, it is shown that, this layer absorbs almost half the incident power. The noticeable dissipation of electromagnetic waves in the frequency band makes it possible to consider a thin layer of plasma as a plasma absorber.
PL
Badana jest technika monitorowania parametrów plazmy do pomiarów antenowych przy użyciu modelu niskociśnieniowych lamp fluorescencyjnych. Parametry fizyczne plazmy w układzie uzyskano za pomocą pomiarów interferometrii mikrofalowej. Korzystając z dokładnego modelu analitycznego, wykazano,że warstwa ta pochłania prawie połowę mocy padającej. Zauważalne rozpraszanie fal elektromagnetycznych w paśmie częstotliwości pozwala uznać cienką warstwę plazmy za absorber plazmy.
Rocznik
Strony
102--106
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
  • Department of Radio-Engineering and Telecommunications Systems, Kazan National Research Technical University named after A. N. Tupolev - KAI, Kazan, Russia
  • Department of Radio-Engineering and Telecommunications Systems, Kazan National Research Technical University named after A. N. Tupolev - KAI, Kazan, Russia
  • College of Engineering, University of Diyala, Iraq
  • College of Engineering, University of Diyala, Iraq
Bibliografia
  • [1] Rybak, J., and Churchill, R., Progress in Reentry Communications, IEEE Transactions on Aerospace and Electronic Systems, 5 (1971), 879-894. https://doi.org/10.1109/taes.1971.310328
  • [2] Dewitt, B. T., and Walter D. B., Electromagnetic scattering by pyramidal and wedge absorber, IEEE Transactions on Antennas and Propagation 36(1988), No. 7, 971-984. https://doi.org/10.1109/8.7202
  • [3] Engheta, N., Thin absorbing screens using metamaterial surfaces, In IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313), vol. 2, (2002 ), 392-395. https://doi.org/10.1109/APS.2002.1016106
  • [4] Salisbury, W. W., Absorbent body for electromagnetic waves, (1952).
  • [5] Edalati, A., Kamal S., Wideband, wide angle, polarization independent RCS reduction using nonabsorptive miniaturized-element frequency selective surfaces, IEEE transactions on antennas and propagation, 62 (2014), No. 2, 747-754. https://doi.org/10.1109/tap.2013.2291236
  • [6] Dautov, O. Sh., Al-Abadi M. S., Riyadh K. A., Radiation Pattern of Spherical Slotted Antenna Coated by Dielectric Material and Plasma, In 2019 International Conference on Advanced Science and Engineering (ICOASE), (2019), 165-169. https://doi.org/10.1109/ICOASE.2019.8723689
  • [7] Laroussi, M., Interaction of microwaves with atmospheric pressure plasmas, international journal of infrared and millimeter waves, 16(1995), No. 12, 2069-2083. https://doi.org/10.1007/bf02073410
  • [8] Ji, J., Ma, Y., Guo, N., Numerical calculation of the reflection, absorption and transmission of a nonuniform plasma slab based on FDTD, Optik, 165 (2018), 240-247. https://doi.org/10.1016/j.ijleo.2018.03.118
  • [9] Jazi, B., Rahmani, Z., Shokri, B., Reflection and absorption of electromagnetic wave propagation in an inhomogeneous dissipative magnetized plasma slab, IEEE Transactions on Plasma Science, 41(2013), No. 2, 290-295. https://doi.org/10.1109/tps.2012.2237525
  • [10] Geng, Y. L., Wu, X. B., Li, L. W., Guan, B. R., Electromagnetic icattering by an inhomogeneous plasma anisotropic sphere of multilayers, IEEE transactions on antennas and propagation, 53 (2005), No.12, 3982-3989. https://doi.org/10.1109/tap.2005.859903
  • [11] Chaudhury, B., Chaturvedi, S., Study and optimization of plasma-based radar cross section reduction using three-dimensional computations, IEEE Transactions on Plasma Science, 37(2009), No.11, 2116-2127 . https://doi.org/10.1109/tps.2009.2032331
  • [12] Shu, Z., Xiwei, H., Minghai, L., Fang, L., Zelong, F., Anderson, W. T., Electromagnetic wave attenuation in atmospheric pressure plasma, Plasma Science and Technology, 9 (2007), No.2, 162-164. https://doi.org/10.1088/1009-0630/9/2/09
  • [13] Ghayekhloo, A., Abdolali, A., Use of collisional plasma as an optimum lossy dielectric for wave absorption in planar layers, analysis, and application, IEEE Transactions on Plasma Science, 42 (2014), No. 8, 1999-2006. https://doi.org/10.1109/tps.2014.2325133
  • [14] Yuan, C. X., Zhou, Z. X., Zhang, J. W., Xiang, X. L., Feng, Y., Sun, H. G., Properties of propagation of electromagnetic wave in a multilayer radar-absorbing structure with plasma-and radar-absorbing material, IEEE Transactions on Plasma Science, 39 (2011) , No. 9, 1768-1775. https://doi.org/10.1109/tps.2011.2160285
  • [15] Ghayekhloo, A., Abdolali, A., Armaki, S. H. M., Observation of radar cross-section reduction using low- pressure plasma-arrayed coating structure, IEEE Transactions on Antennas and Propagation, 65(2017), No.6, 3058-3064. https://doi.org/10.1109/tap.2017.2690311
  • [16] Pitteway, M. L., The numerical calculation of wave-fields, relexion coefficients and polarizations for long radio waves in the lower ionosphere. I. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 257 (1965) , No. 1079, 219-241. https://doi.org/10.1098/rsta.1965.0004
  • [17] Miller, K. L., Smith, L. G., Reflection of radio waves by sporadic-E layers, Journal of Atmospheric and Terrestrial Physics, 39 (1977), No. 8, 899-911. https://doi.org/10.1016/0021-9169(77)90171-4
  • [18] Zhang, D. Y., A new method of calculating the transmission and reflection coefficients and fields in a magnetized plasma layer. Radio Science, 26 (1991), 6, 1415-1418. https://doi.org/10.1029/90rs02330
  • [19] Singh, Y. P., Varma, N. L., Power reflection, transmission and absorption coefficients for a moving plasma slab. Beiträge aus der Plasmaphysik, 25( 1985), No. 1, 19-25. https://doi.org/10.1002/ctpp.19850250104
  • [20] Busatti, E., Ciucci, A., De Rosa, M., Palleschi, V., Rastelli, S., Lontano, M., Lunin, N., Propagation of electromagnetic waves in inhomogeneous plasmas, Journal of plasma physics, 52( 1994 ), No. 3, 443-456. https://doi.org/10.1016/j.ijleo.2018.03.118
  • [21] Dautov, O. S., Excitation of the one-dimensional inhomogeneous isotropic media by the monochromatic electromagnetic plane wave. Environ. Radioecol. Appl. Ecol, 13 (2007) , No. 1, 16.
  • [22] Dautov, O. S., Al-Abadi, M. S., Al-Anbagi, H. N., New proposed spherical slotted antenna covered by the layers of dielectric material and plasma, International Journal of Electrical and Computer Engineering, 10 (2020), No. 2, 1728. https://doi.org/10.11591/ijece.v10i2.pp1728-1735
  • [23] Overzet, L. J., Hopkins, M. B., Comparison of electron-density measurements made using a Langmuir probe and microwave interferometer in the Gaseous Electronics Conference reference reactor, Journal of applied physics, 74 (1993), No. 7, 4323-4330. https://doi.org/10.1063/1.354397
  • [24] Godyak, V. A., Piejak, R. B., Abnormally low electron energy and heating-mode transition in a low- pressure argon rf discharge at 13.56 MHz, Physical review letters, 65 (1990), No. 8, 996. https://doi.org/10.1103/physrevlett.65.996
  • [25] Howlader, M. K., Yang, Y., Roth, J. R., Time-resolved measurements of electron number density and collision frequency for a fluorescent lamp plasma using microwave diagnostics, IEEE transactions on plasma science, 33 (2005), No. 3, 1093-1099. https://doi.org/10.1109/tps.2005.848623
  • [26] Lieberman, M. A., Alan J. L., Principles of plasma discharges and materials processing, John Wiley & Sons, 2005
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b43dc98-c51d-4407-8a10-6a4fa74a9d64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.