Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In most cases of diseased heart valves, they can be repaired or replaced with biological or mechanical prostheses. Biological prostheses seem to be safer than mechanical ones and are applied with good clinical outcomes. Their disadvantage, when compared with mechanical valves, is durability. In the development and application of mechanical and biological heart valves, a significant role can be played by a Hybrid (Hydro-Numerical) Circulatory Model. The aim of this paper is to demonstrate the opportunities created by the hybrid model for investigations of mechanical heart valves and their computer models under conditions similar to those of the circulatory system. A diode-resistor numerical valve model and three different design mechanical aortic valves were tested. To perform their investigations, computer applications were developed under RT LabView to be run on a PC. Static and dynamic characteristics of the valves were measured and registered - pressure in the numerical time-varying elastance left ventricle (pLV), in the aorta (pas) and flow (f), proving, among other factors, that 1) time delay of pas with respect to pLV is mainly related to the valve’s opening time, and 2) the valves of substantially different designs tested under identical hydrodynamic conditions reveal nearly the same dynamic performance.
Rocznik
Tom
Strony
605--612
Opis fizyczny
Bibliogr. 22 poz., rys., wykr., tab.
Twórcy
autor
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
autor
- Department of Cardiac Surgery, Central Teaching Hospital Ministry of Interior, 137 Wołoska St., 02-507 Warsaw, Poland
- Kazimierz Pułaski University of Technology and Humanities, 29 Malczewskiego St., 26-600 Radom, Poland
autor
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
autor
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
autor
- Department of Cardiac Surgery, Central Teaching Hospital Ministry of Interior, 137 Wołoska St., 02-507 Warsaw, Poland
autor
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
autor
- Department of Cardiac Surgery, Central Teaching Hospital Ministry of Interior, 137 Wołoska St., 02-507 Warsaw, Poland
autor
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
Bibliografia
- [1] R.O. Bonow, B.A. Carabello, K. Chatterjee, A.C. de Leon, D.P. Faxon, M.D. Freed, W.H. Gaasch, B.W. Lytle, R.A. Nishimura, P.T. O’Gara, R.A. O’Rurke, C.M. Otto, P.H. Shah, and I.S. Shanewise, “2006 writing committee members. American college of cardiology/american heart association task force 2008 focused update incorporated into the acc/aha 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association. Task force on practice guideline (writing committee to revise the 1998 guidelines for the management of patients with valvular heart disease): endorsed by the society of cardiovascular anaesthesiologists, society for cardiovascular angiography and interventions, and society of thoracic surgeons”, Circulation 7 118 (15), 523–661 (2008).
- [2] V.T. Nkomo, J.M. Gardin, T.N. Skelton, J.S. Gottdiener, C.B. Scott, and M. Enniquez-Sarano, “Burden of valvular diseases: a population-based study”, Lancet Online 368, 1005–1011 (2006).
- [3] R.S. McClure, L.H. Cohn, E. Wiegerinck, G.S. Couper, S.F. Aranki, R.M. Bolman, M.J. Davidson, and F.Y. Chen, “Early and late outcomes in minimally invasive mitral valve repair: an eleven-year experience in 707 patients”, J. Thorac. Cardiovasc. Surg. 137 (1), 70–5 (2009).
- [4] M. Van Dyck, D. Glineur, L. de Kerchove, and G. El Khoury, “Complications after aortic valve repair and valve-sparing procedures”, Ann. Cardiothorac. Surg. 2 (1), 130–39 (2013).
- [5] I. Vesely, “Analysis of the Medtronic Intact bioprosthesis valve: Effects of zero-pressure fixation”, J. Thorac. Cardiovasc. Surg. 101, 90–99 (1991).
- [6] T.E. David, J. Ivanov, S. Armstrong, C.M. Feindel, and G. Cohen, “Late results of heart valve replacement with the Hancock II bioprosthesis”, J. Thorac. Cardiovasc. Surg. 121, 268–278 (2001).
- [7] D.S. Bach, N.D. Kon, J.G. Dumesnil, C.F. Sintek, and D.B. Doty, “Ten year outcome after aortic valve replacement with the Freestyle stentless bioprosthesis”, Ann. Thorac. Surg. 80, 480–7 (2005).
- [8] L.P. Dasi, H.A. Simon, P. Sucosky, and A.P. Yoganathan, “Mechanics of artificial heart valves”, Clinical and Experimental Pharmacol. and Physiol. 36, 225–237 (2008).
- [9] L. Ge, L.P. Dasi, F. Sotiropoulos, and A.P. Yoganathan, “Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses”, Ann. Biomed. Eng. 36 (2), 276–97 (2008).
- [10] H.A. Simon, L. Ge, F. Sotiropoulos, and A.P. Yoganathan, “Simulation of the three-dimensional hinge flow fields of a bileaflet mechanical heart valve under aortic conditions”, Ann. Biomed. Eng. 38 (3), 841–53 (2010).
- [11] A. Yoganathan and F. Sotiropoulos, “Using computational fluid dynamics to examine the hemodynamics of artificial heart valves”, US Cardiology 1 (1), 1–5 (2004).
- [12] L.P. Dasi, H.A. Simon, P. Sucosky, and A.P. Yoganathan, “Fluid mechanics of artificial heart valves”, Pharmacol. Physiol. 36 (2) 225–237 (2009).
- [13] A.M. Matthews, “The development of the Starr-Edwards heart valve”, Tex. Heart Inst. J. 25 (4), 282–293 (1998).
- [14] D.W. Wieting, “The Bjőrk-Shiley Delrin tilting disc heart valve: historical perspective, design and need for scientific analyses after 25 years”, J. Heart Valve Dis. Suppl. 2, 157–68 (1996).
- [15] F. Sansone, E. Zingarelli, G.M.A. Dato., G. Punta, R. Flocco, S. Del Ponte, and R. Casabona, “The 37-Year durability of a Bjőrk-Shiley Delrin-disc aortic valve prosthesis”, Tex. Heart Inst. J. 39 (2), 284–285 (2012).
- [16] http://biomed.brown.edu/Courses/B1108_2007_Groups/group05/pages/bjork_s.Bjork-Shiley Heart Valve – Brown University, “Major recalls of organ replacement devices”.
- [17] P. Bloomfield, “Choice of heart valve prosthesis”, Heart 87 (6), 583–589 (2002).
- [18] R.W. Emery, C.C. Krogh, K.V. Arolm, A.M. Emery, K. Benyo-Albrecht, L.D. Joyce, and D.M. Nicoloff, “The St. Jude medical cardiac valve prosthesis: a 25-year experience with a single valve replacement”, Ann. Thorac. Surg. 79, 776–83 (2005).
- [19] A. Kandemir, K. Tokmakuoglu, U. Yildiz, T. Tezcaner, A.C. Yorgancioglu, K. Suzer, and Y. Zorlutuna, , “St. Jude medical and carbomedics mechanical heart valves in the aortic position. comparison of long-term results”, Tex. Heart Inst. J. 33 (2) 154–159 (2006).
- [20] M. Kozarski, G. Ferrari, M. Darowski, K. Zieliński, and K.J. Pałko, “Comprehensive models of cardiovascular and respiratory systems”, in Physical and Hybrid Models: Impedance Conversions, eds M. Darowski and G. Ferrari, pp. 226–240, Nova Science Publ. Inc., New York, 2010.
- [21] M. Kozarski, G. Ferrari, M. Darowski, K. Zieliński, and K.J. Pałko, “Comprehensive models of cardiovascular and respiratory systems, in Physical and Hybrid Models: Impedance Conversions, eds M. Darowski and G. Ferrari, pp. 218–226, Nova Science Publ. Inc., New York, 2010.
- [22] M. Darowski, M. Kozarski G. Ferrari, K. Zieliński, K. Górczyńska, K.J. Pałko, L. Fresiello, and A. Di Molfetta, “A new hybrid (hydro-numerical) model of the circulatory system”, Bull. Pol. Ac.: Tech. 61 (4) 993–1004 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b422535-6cb2-4160-a074-485572b6855f