Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we find a nonexponential Lundberg approximation of the ruin probability in a Cox model, in which a governing process has a regenerative structure and claims are light-tailed or have an intermediate regularly varying distribution. Examples include an intensity process being reflected Brownian motion, square functions of the Ornstein-Uhlenbeck process and splitting reflected Brownian bridges. In particular, we consider a non-Markovian intensity proces.
Czasopismo
Rocznik
Tom
Strony
381--405
Opis fizyczny
Biblogr. 39 poz.
Twórcy
autor
- Institute of Mathematics, Wrocław University, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
- EURANDOM, P.O. Box 513, pl. Grunwaldzki 2/4, 5600 MB Eindhoven, The Netherlands
Bibliografia
- [1] M. Abramowitz and I, Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Wiley, New York 1972.
- [2] R. J. Adler, An introduction to continuity, extrema, and related topics for general Gaussian processes, Inst. Math. Statist., Hayward 1999.
- [3] H. Ammeter, A generalization of the collective theory of risk in regard to fluctuating basic probabilities, Scand. Aktuarietidskr. 31 (1948), pp. 171-198.
- [4] S. Asmussen, Risk theory in a Markovian environment, Scand. Actuar. J. 2 (1989), pp. 69-100.
- [5] S. Asmussen, L. F. Henriksen and C. Klüppelberg, Large claims approximations for risk process in a Markovian environment, Stochastic Process. Appl. 54 (1994), pp. 29-43.
- [6] S. Asmussen and C. Klüppelberg, Large deviations results in the presence of heavy tails, with applications to insurance risk, Stochastic Process. Appl. 64 (Í996), pp. 103-125.
- [7] S. Asmussen, C. Klüppelberg and K. Sigman, Sampling at subexponential times, with queueing applications, Stochastic Process. Appl. 79 (1999), pp. 265-286.
- [8] S. Asmussen, H. Schmidli and Y. Schmidt, Tail probabilities for nonstandard risk and queueing with subexponential jumps, Adv. in Appl. Probab. 31 (2) (1999), pp. 422-447.
- [9] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge 1987.
- [10] T. Björk and J. Gran dell, Exponential inequalities for ruin probabilities in the Cox case, Scand. Actuar. J. 1-2 (1988), pp. 77-111.
- [11] T. Björk and J. Grandell, Lundberg inequalities in a diffusion environment, manuscript, 1998.
- [12] A. N. Borodin and P. Salminen, Handbook of Brownian Motion - Facts and Formulae, Birkhäuser, 1996.
- [13] A. A. Borovkov, Stochastic Processes in Queueing Theory, Nauka, Moscow 1976.
- [14] Kai Lai Chung and Zhongxin Zhao, From Brownian Motion to Schrödinger Equations, Springer, Berlin 1995.
- [15] J. W. Cohen, Some results on regular variation for distributions in queueing and fluctuation theory, J. Appl. Probab. 10 (1973), pp. 343-353.
- [16] P. Embrechts, J. Grandell and H. Schmidli, Finite-time Lundberg inequalities in the Cox case, Scand. Actuar. J. 1 (1993), pp. 17-41.
- [17] P. Embrechts and N. Veraverbeke, Estimates for the probability of ruin with a special emphasis on the possibility of large claims, Insurance Math. Econom. 1 (1982), pp. 55-72.
- [18] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, New York 1971.
- [19] J. Grandell, Aspects of Risk Theory, Springer, New York 1991.
- [20] J. Grandell, Mixed Poisson Processes, Chapman and Hall, London 1997.
- [21] J. Grandell and H. Schmidli, private communication, 2000.
- [22] B. Grigelionis, On Lundberg inequalities in a Markovian environment, in: Proceedings of the Winterschool on Stochastic Analysis and Applications, Akademie-Verlag, Berlin 1992.
- [23] K. Itô and H. P. McKean, Diffusion Processes and Their Sample Paths, Springer, 1974.
- [24] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York 1988.
- [25 J. F. C. Kingman and S. J. Taylor, Introduction to Measure and Probability, Cambridge University Press, Cambridge 1966.
- [26] C. Klüppelberg, Estimation of ruin probabilities by means of hazard rates, Insurance Math. Econom. 8 (1989), pp. 279-285.
- [27] A. J. Lawrance, Some models for stationary series of events, in: Stochastic Point Processes: Statistical Analysis, Theory and Applications, Wiley-Internience, New York 1972.
- [28] B. Leblanc, O. Renault and O. Scaillet, A correction note on the first passage time of an Omstein-Uhlenbeck process to a boundary, Finance Stochast. 4 (2000), pp. 109-111.
- [29] Z. Palmowski, Lundberg inequalities in a diffusion environment, Insurance Math. Econom. 31 (2002), pp. 303-313.
- [30] Z. Palmowski and T. Rolski, A technique for exponential change of measure of Markov processes, Bernoulli 8 (6) (2002), pp. 767-785.
- [31] K. R. Part hasa rathy, Probability Measures on Metric Spaces, Academic Press, New York 1967.
- [32] L. C. G. Rogers and D, Williams, Diffusions, Markov Processes, and Martingales, Volume 2: Itô calculus, Wiley, New York 1987.
- [33] T. Rolski, H. Schmidli, V. Schmidt and J. L. Teugels, Stochastic Processes for Insurance and Finance, Wiley, New York 1999.
- [34] H. Schmidli, Compound sums and subexponentiality, Bernoulli 5 (6) (1999), pp. 999-1012.
- [35] A. J. St am, Regular variation of the tail of a subordinated probability distribution, Adv. in Appl. Probab. 5 (1973), pp. 308-327.
- [36] D. Stroock, Lectures on Stochastic Analysis: Diffusion Theory, Cambridge University Press, Cambridge 1987.
- [37] H. Thorisson, Coupling, Stationarity, and Regeneration, Springer, New York 2000.
- [38] A. D. Wentzell, A course in Theory of Stochastic Processes, Nauka, Moscow 1975.
- [39] M. Yor, Some Aspects of Brownian Motion, Birkhäuser, Basel 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b3f7d49-1c4f-4091-b49a-3224a3b99771