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Abstract: The objective of the paper is to evaluate  the energy efficiency performance of industrial 

plants  based on energy audit measures using dynamic Data Envelopment Analysis. The paper 

demonstrates a three-stage DEA based on slacks-based measure approach to evaluate the energy 
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slacks-based measure model. The paper has revealed inefficiencies of industrial plants, which were 

considered as efficient ones examined individually in energy audit procedure. The results indicate that 
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energy use and cost. Moreover, the results were enriched with the additional analysis of input excesses 

and output shortfalls and further suggestions for improving energy efficiency are provided.  
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1. INTRODUCTION  

Efforts to increase energy efficiency and reduce environmental footprint of 

these facilities have expanded or gained significant traction in USA (Thollander, 

Backlund, Trianni & Cagno, 2013). The major energy saving opportunities are 

probably bound to manufacturing processes optimization and energy process inte-

gration within manufacturing plants and energy intensive manufacturing industry 

(Saidur & Mekhilef, 2010; Yingjian, Jiezhi, Qi &Yafei, 2010; Noro & Lazzarin, 

2014), and others. Currently available energy efficient and cost-effective technolo-

gies can improve energy performance efficiencies in lighting, heating, cooling, 

refrigeration, transportation, and other areas throughout the U.S. programs (Ander-

son & Newell, 2004; Thollander, Backlund, Trianni & Cagno, 2013). Further, the 

energy efficiency can be improved by a wide variety of technical actions including 

e.g. refurbishing equipment; replacing and retiring obsolete equipment, process 

lines to new and state of art technologies or using heat management to decrease 

heat loss and waste energy (Xue, Wu, Zang, Dai & Chang, 2015). 

The potential for energy efficiency improvements remains untapped, especially 

in the SME sector in the European Union, where energy consumption is not always 

seen as a major cost factor. An evaluation of plants performance is an essential 

action thorough energy audits in identifying energy saving opportunities and devis-

ing goals for energy improvement. The analysis of energy – intensity plants has 

cantered traditionally on the analysis of economies (cost and energy savings) under 

the implicit assumption that all companies are efficient (Saidur & Mekhilef, 2010; 

Yingjian, Jiezhi, Qi &Yafei, 2010; Noro & Lazzarin, 2014). The empirical evi-

dence is often based on aggregate data at country or industry level, or disaggregate 

firm level data in industrial and developing countries. Energy losses in manufactur-

ing processes remain unavoidable even if all potential savings are exploited as the 

results of energy audits. Because of the above features, DEA has widely been used 

for the measurement of technology productivity improvement or processes and 

optimal allocation of resources in various manufacturing sectors (Onüt & Soner, 

2007; Zaim, 2004). Furthermore, due to its measurement of technical change, 

DEA-SBM has gained popularity in energy efficiency analysis in many fields 

(Grösche, 2008; Moritaa, Hirokawa & Zhu, 2015). Hence, DEA-SBM was applied 

in measure and benchmark companies performance as an effective method for per-

formance analysis with multiple inputs and outputs. 

The objective of the paper is to evaluate the energy efficiency performance of 

industrial plants based on energy audit measures in order to separate efficient and 

inefficient manufacturers from the set of plant considered as efficient ones. Twelve 

industrial plants are considered as decision making units whose efficiencies were 

determined by energy-efficiency solutions recommended during energy audits. 

A DEA-SBM model is employed in improvement to illustrate the application of the 

model based on the U.S. industrial plants. 
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2. ENERGY EFFICIENCY MEASUREMENT FRAMEWORK 

2.1. DEA and Different Efficiency Concepts 

The measurement of efficiency in production units is defined as the quotient of 

the weighted sum divided by the weighted sum of the effects of inputs. Lovell de-

fines the efficiency of a production unit in terms of a comparison between observed 

and optimal values of its output and input (Lovell, 1993). The comparison can take 

the form of the ratio of observed to maximum potential output obtainable from the 

given input, or the ratio of minimum potential to observed input required to pro-

duce the given output. In these two comparisons the optimum is defined in terms of 

production possibilities, and efficiency is technical (Daraio & Simar, 2007). 

In determining the variables inputs and outputs expert knowledge or accepted 

practices can be useful (Morita & Avkiran, 2009). The selection of the inputs and 

outputs became in the concern of researchers since this issue can lead to misleading 

conclusions due to the different structures of the sectors (Saricam & Erdumlu, 

2012) and company`s performance (Duzakin & Duzakin, 2007). 

According to Charnes, Cooper & Rhodes, 1981, DMU is to be rated as fully ef-

ficient on the basis of available evidence if and only if the performances of other 

DMUs do not show that some of its inputs or outputs can be improved without 

worsening some of its other inputs or outputs.  

Table 1. The notation for an input- and output-oriented SBM-model 

For an input-oriented SBM-model (1) For an output-oriented SBM-model (2) 

minimize       

subject to   

    i = 1, 2, …, m 

     r = 1, 2, …, s  

                   j = 1, 2,…,n 

minimize     

subject to   

    i = 1, 2, …, m 

     r = 1, 2, …, s  

                    j = 1, 2,…, n  

 

Various DEA models have been established as basic model modifications of 

C
2
R model, which initially proposed by Charnes, Cooper & Rhodes, 1981. In this 

way, improving energy efficiency of industrial processes can be achieved by using 

the Slack-Based Measure Model (SBM). SBM model developed by Tone, 2002, 

can be used to measure company-level inefficiency providing an unambiguous 

measure of effectiveness. Efficiency is measured only by additional variables s+ 

and s–. The variables s+ and s– measure the distance of inputs Xλ and outputs Yλ 

of a virtual unit from those of the unit evaluated (Xo). The numerator and the 

denominator of the objective function of model (1) measures the average distance 

of inputs and outputs, respectively, from the efficiency threshold. DMU (xio, yro) in 

model (2) is SBM-efficient unit, if p* = 1, that means si
* + 

= 0, si
*- 

= 0, as no slack 
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variables for input and output in optimal solution. It provides an efficiency score 

between 0 and 1. The model formulas depending on either the input or output 

orientation, to ensure that the result is found from variables, which are under 

managerial control is expressed in Table 1, (Thanassoulis, 2003). 

Other approach which extends existing SBM Network Data Envelopment 

Analysis is presented by Lozano, 2015. In this model the input and output slacks 

are measured at the system level instead of at the process level giving freedom to 

the different processes to increase some inputs or decrease some outputs. There-

fore, it leaves a room for further research related to the relationship between the 

overall efficiency of the system and the efficiency of its processes (Lozano, 2015). 

2.2. Empirical study of efficiency using SBM-DEA 

The procedure for SBM-DEA measures energy efficiency of industrial plants in 

three stages (Fig. 1). In the first phase the author focuses on identifying the key 

elements of energy audits reports that provide the database to evaluate efficiency of 

industrial plants.  

 

 

Fig. 1. Structure of research framework 

Relevant elements of energy audits that can be attributed to efficiency im-

provements are categorized into inputs and outputs  in order to select appropriate 

variables. In the second stage multiple regression is used to select variables in order 

to be evaluated using SBM-DEA model. Then, based on the application of SBM 

model, the experimental results will be evaluated in the third step. In this study, the 
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data was collected for twice in 2013 and 2014 respectively. Quantitative measures 

data of various processes were obtained by means of energy audits. This study is 

built upon the results of energy audits carried out by the author with the Industrial 

Assessment Center`s experts at the University of Michigan.  

2.2.1. Data collection 

Manufactures must meet criteria described in Alhourani & Saxena, 2009. The 

analysis was established for 12 facilities from the industries classified to the North 

American Industry Classification System (NAICS) based on production-oriented 

principles as industrial performance consists of fluid power valves and hose fit-

tings, manufacturing processed milk products, metal coating, semiconductor and 

related device manufacturing, motor vehicle brake system manufacturing. 

2.2.2. Determining elements of energy audits reports 

Table 2. Steps for setting variables 

Step Description Results 

1 List variables that 

have relationship with 
efficiency of plants 

from audit reports  

(x1) Production ; (x2) Total electricity cost; (x3) Total gas cost;  (x4) Electricity 

consumption; (x5) Gas consumption;  (x6) Potential electricity estimated 
savings; (x7) Potential gas estimated savings; (x8) Electricity saving; (x9) Gas 

saving 

2 Run a multiple 
regression using all 

nine  x-variables as 

predictors. 
Assumption: 

Variables X i Y both a 

normal distribution 

Analysis of Variance 
Source          DF           SS           MS      F      P 

Regression       8  6.35864E+15  7.94830E+14  23.82  0.012 

Residual Error   3  1.00087E+14  3.33623E+13 
Total           11  6.45873E+15 

3 Run a general linear 
F-test  

H0 : β7=0 

HA : β7  ≠ 0 
 

 

General Linear F procedure was used to see whether it is reasonable to declare 
that non-significant variable can be dropped from the model (p-values for the 

variables (x7) Potential gas estimated savings, is not at a statistically significant 

level). Finally, a decision is made: there is not enough evidence at the α level to 
conclude that there is lack of linear fit. The full model includes all eight  

variables; SSE(full) = 1.00087E+14, the full error df = 3, and MSE(full) = 

3.33623E+13. The reduced model includes almost all variables (x1- x6; x8, x9) 
besides x7. From analysis variance output, we see that SSE(reduced) = SSE(X7) 

= 2.59460E+14 , with df = 4, and MSE(reduced) = MSE(X7) = 6.48649E+13. 

With these values obtained from the reduced model, we obtain the test statistic 
for testing H0: β7 = 0: 4.777 

 

Because p = 0.88 (not at a statistically significant level), so we do not reject the 
null hypothesis and it is reasonable to remove electricity savings from the model. 
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The elements for determining energy efficiency found in the audit reports such 

actual cost of energy, cost savings, energy conservation opportunities, and produc-

tion, are based upon the observations, measurements of industrial plant operations 

performed by the IAC team during the plant visit.  

2.2.3. Selection of variables 

In order to select significant variables to be evaluated in SBM model, the author 

provided a 3-step process where in the first step x-variables are distributed from 

energy audits reports (Table 2). In the second step the variables are run by a multi-

ple regression and in the third step a general linear F-test to see whether it is rea-

sonable to declare that non-significant variable can be dropped from the model.  

Then, X-variables are categorized into input (I) and output (O) to be evaluated 

on SBM model as shown in Table 3. The outputs of each plant are  potential elec-

tricity estimated savings (Y1), electricity savings (Y2), gas savings (Y3) was 

measured. The input data include production (X1), total electricity cost (X2), total 

gas cost (X3), electricity consumption (X4), total gas consumption (X5).  

2.2.4. SBM-DEA evaluation and results analysis 

The results of an energy efficiency measures based on application of a slacks-

based measure model in DEA model for efficient manufacturing plants individually 

are presented in Table 4. With data in Table 2, the technical efficiency of facilities 

through DEA Solver Pro 5.0 is calculated.  

Table 3 represents the energy efficiency of the 12 industrial plant, which is the 

result of employing SBM-input oriented model (1). The paper single out productive 

units DMU 3, DMU 7, DMU 8, DMU 10, DMU 11, and DMU 12 as efficient. Sub-

stantial inefficiency between six plants (DMU 1, DMU 2, DMU 4, DMU 5, DMU 

6, DMU 9) are far from achieving an energy-efficient regime. The lowest ineffi-

ciency score is 0.38 assigned to the DMU 5. The main reason for being an ineffi-

cient manufacturer is excess use of electricity and gas. The inefficient DMUs 1 and 

2 are very close to each other, moreover, DMUs 1 and 2 in comparison with DMUs 

4, 5, 9 are more inefficient and other technical efficient DMUs do not dominate 

them. It is also observed that these considered inefficient plants get lower scores 

than the average efficiency score of 5.91 for 12 facilities, as shown in Fig. 2a.  

The efficiency of the facilities allowed getting a ranking of efficient companies. 

The ranks of these DMUs are illustrated in the last column of Table 3 which shows 

the following ranking: DMU 12 = DMU 11 = DMU 10 = DMU 3 = DMU 8 = 

DMU 7 > DMU 5 > DMU 4 > DMU 9 > DMU 2 > DMU 1 > DMU 6. Fig. 2b de-

picts the results of descending values of efficiency scores of the SBM model for 

particular plants  using the percentages. U.S. 
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The performances of the facilities are evaluated on annual industrial data and 

the input excesses and shortfalls leading inefficiencies are determined. By observ-

ing input excesses in Table 5, the most input excess is observed in the production 

input with values of 5033787.4; 2969957.6; 11983096; 27830925; 499984.31; 

2137188.3 respectively for plant 1, 2, 4, 5, 6 and 9. These show that the capacity 

utilization in terms of that input requires more effort to be improved. 

Table 3. Selected variables of 12 DMUs with their efficiency evaluation 
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1 5036762 130407 13014 1033826 1671 6575 47576 227 0.131 11 

2 2971690 90822 4764 760480 529 2440 24201 119 0.136 10 

3 20000000 258690 23004 3346231 3339 136240 1510567 -14147 1 1 

4 12000000 970272 57713 10023119 7465 62706 528695 1915 0.195 8 

5 27913794 958492 474635 8451840 105000 174190 1822680 7406 0.386 7 

6 500000 75136 12918 665920 1407 4463 34352 13 0.100 12 

7 130000 844098 993745 8270143 199739 327614 2276631 1365 1 1 

8 4267200 509979 258082 5508246 47159 143338 1823072 8533 1 1 

9 2200000 1298194 648492 18764077 93744 65690 1067780 4805 0.153 9 

1
0 

85000000 226690 47313 2562672 6001 123858 2384967 321 1 1 

1

1 
500000 598531 121134 5491116 17207 56672 333925 17207 1 1 

1
2 

300 291361 14578 2262900 1715 85354 661739 1715 1 1 

 

Considering input excess the biggest value for the plant 9 can decrease its slack 

in total electricity. Regarding the input excesses in terms of total gas cost  it reach-

es the greatest value of 415806.7 in plant 5, where in terms of gas consumption 

plant 5 also represents the biggest value. The average input excess value of 

2182660.3 in the input electricity consumption becomes 8070183.2 and 14570351 

for plants 4 and 9 respectively. DMU 9 depicts most output shortage of potential 

electricity estimated savings compared with the output shortage of DMU 5 and 

DMU 4, while DMU 2 is the smallest value (728.39). DMU 6 shows output short-

age of gas saving before and after when it gets zero values for the following 

DMUs. Plants 1 shows most output shortfall of electricity savings after when it gets 

zero values until reaches a value corresponding to the plant 6. Then zero values 

occurs again for the rest of plants. Gas savings is lacking of output shortage except 
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for the plant 6 which gets the highest value of 76.67 (above average shortage 

score). Considering of shortage output, potential electricity estimated savings be-

came very painful for the plants 2, 4, 5, 9 whereas the rest ones get zero values  in 

terms of efficiencies.  

 

 

Fig. 2. a) Efficiency scores of the SBM model for individual plants; b) Descending effi-

ciency scores of the SBM model for particular plants  

Table 4. Inefficiency slacks from dynamic SBM model 

  Excess Excess Excess Excess Excess Shortage Shortage Shortage 

DMU Production 

Total 

electricity 
cost 

Total gas 
cost 

Electricity 
consum. 

Gas 
consum. 

Potential 

electricity 

estimated 
savings 

Electricity 
saving 

Gas 
saving 

  S-(1) S-(2) S-(3) S-(4) S-(5) S+(1) S+(2) S+(3) 

1 5033787.40 105570.70 11232.84 835955.5 1444 0 2776.46 0 

2 2969957.60 78611.44 3839.01 662743.21 410 728.39 0 0 

3 0 0 0 0 0 0 0 0 

4 11983096 722437.20 42272.76 8070183.20 5550 5940.84 0 0 

5 27830925 81865.18 415806.70 1505093.10 97594 63139.66 0 0 

6 499984.31 59901.28 12155.74 547597.22 1317.33 0 249.09 76.67 

7 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 

9 2137188.30 771755.2 610781.70 14570351 88939 73732.89 0 0 

10 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 

Average 4204578.2 151678.4 91340.73 2182660.3 16271.19 11961.81 252.13 6.39 
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The output shortfall is the smallest for the plant 6 in terms of gas savings com-

pared with electricity savings. With regards to input excess the biggest value for 

the plant 9 can decrease its slack in total electricity. 

Regarding the input excesses in terms of  total gas cost it reaches the greatest 

value of 415806.7 in plant 5, where in terms of gas consumption plant 5 also repre-

sents the biggest value. The average input excess value of 2182660.3 in the input 

electricity consumption becomes 8070183.2 and 14570351 for plants 4 and 9 re-

spectively. 

Table 5. Energy efficiency evaluation in terms of the suggested recommendations 
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1 
Install a cogeneration 

system 
1383250 737517.2 9229081 

-

28838.4 

2.05009814808607E

-04 
10 

2 
Replace Electric Heaters 
with Natural Gas boilers 

94400 89276 1146670 -5500 
1.08028307696926E

-02 
9 

3 
Duct outside air to com-

pressor intakes 
12850 20451 244774.4 0 0.245554003154489 7 

4 
Use gas heaters instead of 

electric heaters 
600 945 10738 0 0.405557642260854 4 

5 
Lower steam operating 
pressure 

10000 0 0 3167.52 0.354437550156172 6 

6 
Install high efficiency 

lighting 
111390 42629 382739 0 

2.56729479208925E

-02 
8 

7 
Install Insulation on Con-

densate Return Pipes 
3000 0 0 860 0.398655755870139 5 

8 
Reduce compressor set 
point pressure in com-

pressed air system 

2700 11423 163022 0 1 1 

9 
Recover air compressor 
waste heat  

1000 0 0 333.84 1 1 

10 
Install variable speed drive 

(VSD) pumps 
7300 30355 490846.62 0 1 1 

 

The same procedure like described in the section 2.2.3 and 2.2.4 is carried out 

for the suggested technical recommendations for the considered plants. Similarly, 

energy efficiency is calculated as shown in Table 5, which is the results of model 

(2). Inputs and outputs are selected from five variables; (x1) investment cost (x2) 

potential electricity and (x3) gas cost savings, (x4) electricity savings, (x5) gas 

savings (full model). The reduced model includes the variables; x1; x2; x4, x5 as 

predictors. From this output, it is seen that SSE(full) = 1.98155E+09, with df = 6, 

and MSE(full) = 3.30258E+08. Thus, this test statistic comes from F3,6 distribu-

tion, of which the associated p-value is 0.66 (P (F<= 1.39)). The largest potential 
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for energy efficiency improvements is in in reduction compressor set point pres-

sure, recovering air compressor waste heat and installation of VSD, with a value of 

equal to 1.  

The results show that the obtained overall efficiency measures are much less (< 

1) for the following plants (1, 2, 4, 5, 6, 9) than those corresponding to energy au-

dits outcomes in efficiency and technology recommended, where energy audits 

solutions were considered as efficient ones (score 1). The proposed approach has 

also shown that not all processes of a DMU are efficient besides a DMU is efficient 

itself. The DEA-SBM analysis also helps identify possible directions to improve 

the inefficient DMUs. Thus, this can be the basis for policy-makers to promote the 

development of these DMU's. 

3. CONCLUSION 

The paper identifies six inefficient industrial plants, which were considered as 

efficient ones in previous research relying on performing energy audits. Based on 

the SBM-DEA results, it can be seen that plants 3, 7, 8, 10, 11, 12 may be regarded 

as efficient DMUs. These efficient plants can serve as a benchmark for other 

plants. It also can be seen that the efficiency scores of these six mentioned plants 

are much higher than the non-efficient plants (1, 2, 4, 5, 6, 9). Estimation of the 

efficiency across plants indicates that the inefficient plants suffer from poor per-

formance. Given the above findings, it seems necessary to make a serious effort for 

the efficiency improvement of the energy efficiency for these plants. The fact that 

the greatest energy efficiency improvement potential in this data is found in sup-

port processes even for manufacturing firms does not necessarily reflect the “true 

potential” but could be a reflection of the knowledge and expertise of the energy 

auditors who has conducted the audits. Therefore, the results of this study indicate 

the need to develop in-depth research in energy-savings recommendations for im-

proving energy efficiency.  

A few limitations of this study should be noted because of the quality of the da-

ta which may contain errors on multiple level. Data was derived from energy audits 

conducted, and these audits may have measurement errors. On the other hand, data 

related to potential cost and energy saving in terms of different processes was ag-

gregated and thus may have a worse quality. Additionally, a 3-step process to se-

lect criteria seems to be elementary but has the potential to become usefulness if 

combined with the other making decision methods, thus that could offer benefits 

for more intensive energy efficiency improvement. 
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