
ARCHIVES OF MECHANICS
Arch. Mech. 75 (6), 673–695, 2023, DOI: 10.24423/aom.4394

Static analysis of thin-walled beams using two-phase
local-nonlocal integral model

M. G. GÜNAY

Isparta Applied Sciences University, Technology Faculty,
Mechanical Engineering Department, Isparta, Turkey,
e-mail: muhsingunay@isparta.edu.tr

A mathematical model is developed for static analysis of small-scale thin-
walled beams having arbitrary cross sections. Constitutive relations of the thin-walled
beams are defined upon the two-phase local-nonlocal mixture model with integral
formulation. The developed model includes flexural-torsional coupling and warping
effects. Governing equations of the thin-walled beams having nonlocal property are
derived by using the principle of minimum potential energy. The displacement based
finite element method is used to solve both local and nonlocal part of the model. The
effect of the nonlocal parameters on the static behavior of micro-scale thin-walled
beams having closed and open cross-sections is examined and discussed for various
nonlocal parameters and boundary conditions.
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1. Introduction

Thin-walled beams may occur naturally or they can be prepared ar-
tificially. Natural or artificial thin-walled beams appear in many fields of our
modern life from the nano to the macro scale. Compared to solid beams with
the same cross-sectional area, thin-walled beams have greater flexural rigidity.
This makes them preferred structural elements in many applications. The usage
of thin-walled beams as structural elements dates back to ancient civilizations.
Nowadays, the use of thin-walled beams in steel frames and light weight struc-
tures has increased the interest in them. Hereby engineering calculations on thin-
walled beams get more sophisticated. In this manner studies of Timoshenko
and Goodier [1] can be counted as one of the first modern studies on thin-
walled beams. Works of Vlasov [2] and Gjelsvik [3] set the standards on the
modelling of thin-walled beams. While metal thin-walled beams are usually used
in buildings and chassis of vehicles, thin-walled beams made of composite ma-
terials usually are preferred at lightweight structures. Librescu and Song [4]
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compiled previous studies on the topic and developed a theory for thin-walled
composite beams.

As the dimensions of a structure reduces from macro to micro/nano scale
inhomogeneous properties such as atomic structure, grain size and orientation,
material voids etc. may get effective on the mechanical behavior of the structure.
In this case classical continuum equations can be enriched by using theories
such as nonlocal elasticity [5], strain gradient [6], micropolar [7] and surface
elasticity [8] to account for this kind of small-scale effects.

Nonlocal beams modelled by the Euler–Bernoulli beam theory and Eringen’s
nonlocal elasticity theory has been specifically addressed in the literature. It has
been indicated that these nonlocal models show ill-posed properties [9–12] for
some boundary conditions, especially for cantilever beams under a concentrated
tip load. But, when the studies indicating this problem are examined, it is seen
that the mentioned ill-posed case occurs when the constitutive relations are ex-
pressed by using the strain driven differential form [9] instead of the original
integral form [5] of the nonlocal elasticity theory. To overcome this situation
several models and solutions are developed in the literature such as the gradi-
ent elasticity model [10, 13], local-nonlocal mixture model [10, 14], lattice based
model [15], stress driven model [16–19] and enhanced models [20]. Additional
to these models, Challamel et al. [21] managed to solve the cantilever beam
problem by applying a discontinuous rotation field at the acting point of the
concentrated load. They also solved the mentioned cantilever beam problem by
modelling the cantilever beam as half of a simply supported beam and acquired
the same results with the discontinuous rotation field solution. Latterly, Fer-
nandez et al. [22] compared the differential formulation and the integral formu-
lation of the nonlocal elasticity theory for nonlocal beams. And they mentioned
that while converting the integral formulation to the differential formulation, the
conditions described by Polyanin and Manzhirov [23] must be fulfilled. They
stated that if these conditions are not fulfilled the differential formulation may
lead to abnormal trends [22]. Additionally, Fernandez et al. [22] showed that
the integral formulation can be used for any boundary condition and loading case.

Even though the small-scale effect theories are mostly used for investigation
of nano structures, the usage of these theories on micro-scale structures has been
increasing recently. Li et al. [24] examined vibrational behavior of microbeams
having circular and rectangular cross-sections based on the modified couple stress
theory. But still there are a few studies which combine thin-walled beam theories
with small-scale effect theories in the literature. Ghane et al. [25] investigated
vibrations of fluid-conveying thin-walled nanotubes by using the nonlocal strain
gradient theory. Soltani et al. [26] used the differential form of Eringen’s non-
local theory to analyze the stability of small-scale tapered I-beams with axially
varying material properties.
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Recently, Günay has investigated buckling [27] and vibration [28] of
nano/micro scale nonlocal thin-walled beams. Unlike the author’s previous works
this study focuses on the static analysis of nonlocal thin-walled beams, includ-
ing the problem of a nonlocal cantilever beam under a concentrated tip load.
Results of the developed model are compared with the results and solutions
available in the literature. It is validated that the developed model is capable of
performing static analysis of small-scale thin-walled beams showing a nonlocal
property for any loading or boundary condition. This is achieved by defining
the constitutive relations of the thin-walled beams theory [4] with two phase
local-nonlocal integral formulation [5, 14]. As numerical examples, effects of the
nonlocal parameters on the deformation of the micro-scale thin-walled beams
are investigated and discussed for several boundary and loading conditions.

2. Kinematics

Thin-walled beams theory developed by Vlasov [2] and latterly by Li-
brescu [4] depends on the idea of reducing three-dimensional geometry of the
thin-walled beam to an elastic line which is called as the pole. The intersection
of the cross-section plane and the pole called as the pole point P (xp, yp) which
moves with the cross-section. By assuming that the cross section of the beam
does not change its shape in its own plane during deformation, the U , V dis-
placements and φ rotation of the cross section can be defined depending on the
pole point. Two coordinate systems are used in formulations as seen in Fig. 1.
The first one is the global (x, y, z) Cartesian coordinate system and the second
one is the local (s, n, z) coordinate system placed on the middle surface.

Fig. 1. Coordinate systems and displacements of an arbitrary point (m) on the middle
surface.

By neglecting the transverse shear stresses and allowing the cross-section
to warp perpendicular to its own plane, displacements of an arbitrary point-A
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which is (n) units away from the middle surface can be expressed in terms of U
and V displacements and φ rotation as given below [4]:

Us(s, z, n) = U(z)
dx

ds
+ V (z)

dy

ds
+ φ(z)(rn(s) + n),(2.1a)

Un(s, z) = U(z)
dy

ds
− V (z)

dx

ds
− φ(z)rs(s),(2.1b)

W (s, z, n) = W0(z)− U ′(z)
(
x(s) + n

dy

ds

)
− V ′(z)

(
y(s)− n dx

ds

)
(2.1c)

− φ′(z)(F1(s) + nF2(s)),

whereW0 is the axial displacement of the origin of the cross-section contour (s0),
rn(s) is the distance to the pole point in normal direction and similarly rs(s)
is the distance to the pole point in the tangential direction. F1(s) and F2(s)
are the primary and secondary warping functions which depend on the shape of
the cross-section. Definitions of these terms are given in Appendix A.1. Based
on the small deformation assumption, the εss, εnn and γsn strains are neglected
and the remaining εzz axial and γsz, γnz shear strains of the thin-walled beam
are expressed as:

εzz =
dW

dz
= ε(0)

zz + nε(1)
zz ,(2.2a)

γsz =
∂W

ds
+
∂Us
∂z

= γ(0)
sz + nγ(1)

sz ,(2.2b)

γnz =
∂W

∂n
+
∂Un
∂z

= 0,(2.2c)

where (. . .)(0) indicates the middle surface strains and (. . .)(1) indicates the mid-
dle surface curvatures.

3. Governing equations

Equilibrium equations of the thin-walled beam are obtained by equating the
variation of the total potential energy of the system to zero. The total potential
energy of the system is the sum of the strain energy and the work done by
external forces and a moment

(3.1) Πtotal = Πstrain +Wext,

where the strain energy is defined as:

(3.2) Πstrain =
1

2

∫
v

(σ(k)
zz εzz + σ(k)

sz γsz) dv.
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By substituting Eqs. (2.2a) and (2.2b) into Eq. (3.2) and expanding the
displacement terms the strain energy is obtained as given below

(3.3) Πstrain =

1

2

∫
v

{
σzz(s)

[
W ′0 − U ′′

(
x+ n

dy

ds

)
− V ′′

(
y − ndx

ds

)
− φ′′(F1(s) + nF2(s)

)]
+ σsz(s)

[
δc

2Ω

h(s)Gsz(s)L
+ n

(
δc

2β

h(s)Gsz(s)L
+ δo2

)]
φ′
}
dv.

This equation can be rearranged by using stress resultants as:

(3.4) Πstrain =
1

2

l∫
0

(NzW
′
0 −MxV

′′ −MyU
′′ +Mzφ

′ −Mωφ
′′) dz,

where (Nz,Mx,My,Mω,Mz) are the beam forces and the moments which are
defined below:

Nz =

∫
c

h/2∫
−h/2

σzz dn ds,(3.5a)

Mx =

∫
c

y

h/2∫
−h/2

σzz dn+

h/2∫
−h/2

nσzz dn
dx

ds
ds,(3.5b)

My =

∫
c

x

h/2∫
−h/2

σzz dn−
h/2∫
−h/2

nσzz dn
dy

ds
ds,(3.5c)

Mω =

∫
c

h/2∫
−h/2

σzz dnF1(s)−
h/2∫
−h/2

nσzz dnF2(s) ds,(3.5d)

Mz =

∫
c

h/2∫
−h/2

σsz dn

(
δc

2Ω

h(s)Gsz(s)L

)
(3.5e)

−
h/2∫
−h/2

nσsz dn

(
δc

2β

h(s)Gsz(s)L
+ δ02

)
ds.

The work done by external forces and moments is calculated as:

(3.6) Wext =

l∫
0

(qz ·W0 + qx · U + qy · V +mz · φ) dz,
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where qx and qy are distributed transverse loads, qz is the distributed axial load
and mz is the distributed axial torque. By substituting Eq. (3.4) and Eq. (3.6)
into Eq. (3.1) then equating the first variation of the total potential energy to
zero, the following weak formulation is obtained:

(3.7)
l∫

0

(Nz · δW ′0 −Mx · δV ′′ −My · δU ′′ +Mz · δφ′ −Mω · δφ′′

+ qzδW0 + qxδU + qyδV +mzδφ) dz = 0.

4. Constitutive relations

As mentioned in the introduction section, some nonlocal beam models may
show ill-posed properties for some loading cases, especially for cantilever beams.
This situation can be avoided by using integral formulation as mentioned by
Fernandez et al. [22]. Considering this situation, constitutive relations of the
developed model are defined by using the two-phase local-nonlocal mixture model
with integral formulation. The two-phase local-nonlocal mixture model combines
the classical local elasticity and nonlocal elasticity models. In general, constitu-
tive relations of a structure can be expressed with the two-phase local-nonlocal
mixture model as given below [5, 14]

tkl(~x, t) = ξ1Eijklεkl(~x, t) + ξ2

∫
V

α(|~x− ~x′|, τ)Eijklεkl(~x
′, t) dx′,(4.1)

~x = {x, y, z},(4.2a)

~x′ = {x′, y′, z′},(4.2b)

where α(|~x−~x′|, τ) is the non-local kernel function which defines the influence of
the neighboring points (~x′) to the actual point (~x), τ is the nonlocal parameter
in length units, Eijkl is the material constants and εkl is the strain component;
ξ1 and ξ2 are volume fractions of classical local elasticity and nonlocal integral
elasticity, respectively. By definition summation of volume fractions equals to
one (ξ1 + ξ2 = 1). As seen from Eq. (4.1) choosing ξ2 as zero gives classical
constitutive relations and choosing ξ1 as zero gives pure nonlocal constitutive
relations in integral form. Here the kernel function can be chosen as a cone
function, a bell function, and the Gaussian function or similar. By choosing the
nonlocal kernel as a bi-exponential function the two-phase local-nonlocal shell
constitutive relations can be written as given below for a well-known plane stress
condition:
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(4.3)



Nzz(z)
Nss(z)
Nsz(z)
Lzz(z)
Lss(z)
Lsz(z)

 = ξ1



A11 A12 A16 B11 B12 B16

A22 A26 B12 B22 B26

A66 B16 B26 B66

D11 D12 D16

sym D22 D26

D66





ε
(0)
zz (z)

ε
(0)
ss (z)

γ
(0)
sz (z)

ε
(1)
zz (z)

ε
(1)
ss (z)

γ
(1)
sz (z)



+ ξ2
1

2τ

∫
e−
|z−z′|
τ



A11 A12 A16 B11 B12 B16

A22 A26 B12 B22 B26

A66 B16 B26 B66

D11 D12 D16

sym D22 D26

D66





ε
(0)
zz (z′)

ε
(0)
ss (z′)

γ
(0)
sz (z′)

ε
(1)
zz (z′)

ε
(1)
ss (z′)

γ
(1)
sz (z′)


dz′.

Here the nonlocal property is effective only in the z-direction. Assuming that
the hoop stress resultant (Nss) and the hoop stress couple (Lss) are negligibly
small. As the ξ1 and ξ2 are positive real numbers, in the equations of Nss and
Lss both local and nonlocal part will be zero separately. This gives opportunity
to extract ε(0)

ss and ε
(1)
ss strains from the concerned equations. By substituting

the extracted strains into Eq. (4.3) the modified constitutive relations can be
defined in matrix form as presented below

(4.4)


Nzz(z)
Nss(z)
Nsz(z)
Lzz(z)

 = ξ1


a11 a16 b11 ba16

a66 b
b
16 B66

d11 d16

sym d66



ε

(0)
zz (z)

γ
(0)
sz (z)

ε
(1)
zz (z)

γ
(1)
sz (z)



+ ξ2
1

2τ

∫
e−
|z−z′|
τ


a11 a16 b11 ba16

a66 b
a
16 b66

d11 d16

sym d66



ε

(0)
zz (z′)

γ
(0)
sz (z′)

ε
(1)
zz (z′)

γ
(1)
sz (z′)

 dz′.
Calculation of the elements of the modified constitutive relations can be

found in detail in [29]. Here the non-zero elements for an isotropic material are
expressed as following:

a11 = Eh,(4.5a)
a66 = Gh,(4.5b)

d11 = E
h3

12
,(4.5c)

d66 = G
h3

12
.(4.5d)
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The constitutive relations between the beam forces and the pole point dis-
placements can be obtained by substituting the modified constitutive relations
into Eqs. (3.5) as:

(4.6)


Nz(z)
My(z)
Mx(z)
Mω(z)
Mz(z)

 = ξ1


e11 e12 e13 e14 e15

e22 e23 e24 e25

e33 e34 e35

sym e44 e45

e15



W0
′(z)

−U ′′(z)
−V ′′(z)
−φ′′(z)
φ′(z)



+ ξ2
1

2τ

∫
e−
|z−z′|
τ


e11 e12 e13 e14 e15

e22 e23 e24 e25

e33 e34 e35

sym e44 e45

e15



W0
′(z′)

−U ′′(z′)
−V ′′(z′)
−φ′′(z′)
φ′(z′)

 dz′,

where [eij ] is called as the beam stiffness matrix. Elements of the beam stiffness
matrix [eij ] is given in Appendix A.2.

5. Finite Element Method

The governing equations of the system is solved by the displacement based
finite element method where the thin-walled beam is discretized with two node
finite beam elements. Generalized displacements are expressed by using linear
Lagrange (SL,i) and hermetic-cubic (SH,i) shape functions as:

W =

n∑
i=1

wi.SL,i,(5.1a)

U =

n∑
i=1

ui · SH,i,(5.1b)

V =

n∑
i=1

vi · SH,i,(5.1c)

Φ =

n∑
i=1

φi · SH,i.(5.1d)

Governing equations of the thin-walled beam having nonlocal property is ex-
pressed in the matrix form as given below by substituting Eq. (4.6) and Eqs. (5.1)
into the weak formulation given in Eq. (3.7)
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(5.2)ξ1


K11
ij K12

ij K13
ij K14

ij

K22
ij K23

ij K24
ij

K33
ij K34

ij

sym K44
ij


L

+ ξ2


K11
ij K12

ij K13
ij K14

ij

K22
ij K23

ij K24
ij

K33
ij K34

ij

sym K44
ij


NL


wi
i

vi
φi


∆

=


fwi
fui
fvi
fφi


f

.

Here [K]L and [K]NL are the local and nonlocal parts of the assembled global
stiffness matrix, {∆} is the displacement vector and {f} is the force vector.
Displacements of the thin-walled beam having nonlocal property can be achieved
by solving Eq. (5.2). Elements of the local stiffness matrix [K]L and the load
vector {f} can be found in [30]. The elements of the nonlocal stiffness matrix
[K]NL are given in reference [27] for the case of using the bi-exponential function
as the nonlocal kernel.

6. Illustrative examples

In this section, the convergence of the developed finite element model is
initially examined. Then validation of the presented model is realized by using
available results and solutions in the literature. Finally, several loading cases
are examined for nonlocal thin-walled beams. In the following calculations the
beams shown in Fig. 2 are used. Dimensions and mechanical properties of the
used beams are given in Table 1.

Table 1. Dimensions and mechanical properties of beams.

Bean Type a b L h E G v

Solid-Beam 1.667 [nm] 1.667 [nm] 20 [nm] solid 68.5 [GPa] 26 [GPa] 0.32
Box-Beam 2 [µm] 1 [µm] 20 [µm] 0.1 [µm] 100 [GPa] 38.5 [GPa] 0.3
U-Beam 2 [µm] 1 [µm] 20 [µm] 0.1 [µm] 100 [GPa] 38.5 [GPa] 0.3

Fig. 2. Investigated beams having nonlocal property.

6.1. Convergence and validation

The convergence of the finite element solution is calculated by applying the
simply supported boundary condition and the distributed load of qy = 1 [N/m]
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to the box-beam described above for the nonlocal parameter to the beam length
ratio (τ/L) of 0.01, 0.1, 0.2 and the local volume fraction (ξ1) of 0 (pure nonlocal
case). As seen in Fig. 3 the finite element solution converges after 40 elements.
The finite element solution of a nonlocal part needs much more elements than
needed for a classical structure. Based on this convergence study, 50 finite beam
elements are used to discretize the investigated thin-walled beams at all following
calculations.

Fig. 3. Convergence of the finite element solution.

As explained in detail in Section 4, the presented model uses the integral for-
mulation to define nonlocal constitutive relations. Because the developed model
depends on the integral formulation, it is expected that the model could be
used for any boundary condition and loading case, including the problematic
cantilever beam problem. To further investigate the validity of the presented
model, the acquired results have been compared with the results and solutions
of Fernandez et al. [22], Challamel et al. [21], and Reddy and Pang [31].
The closed form solutions of Challamel et al. [21] and Reddy and Pang [31]
are summarized in Appendix A.3. During validation, the solid-beam defined in
Table-1 has been used, the local volume fraction (ξ1) has been set to zero and
the nonlocal parameter to the beam length ratio (τ/L) has been varied form
0.005 up to 0.05 with steps of 0.005.

In the first validation case, simply supported nonlocal beams under a dis-
tributed load of 0.01 [N/m] are investigated. The maximum transverse deflection
of the beams are calculated. The acquired results are compared with the solu-
tion of Reddy and Pang [31] and the results of Fernandez [22] as presented
in Fig. 4.

In the second validation case cantilever nonlocal beams under a concentered
tip load of 0.1 [nN] and under a distributed load of 0.01 [N/m] are investigated
separately. Acquired results for the cantilever beams are compared with the
solution of Challamel et al. [21] and the results of Fernandez [22] as given
in Figs. 5 and 6.
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Fig. 4. Normalized transverse deflection for simply supported nonlocal solid-beam under
distributed load qy = 0.01 [N/m].

Fig. 5. Normalized transverse deflection for cantilever nonlocal solid-beam under
concentered load Fy = 0.1 [nN].

Fig. 6. Normalized transverse deflection for cantilever nonlocal solid-beam under distributed
load qy = 0.01 [N/m].
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As seen in Figs. 4–6 the results of the developed model are perfectly in
alignment with the results of Fernandez et al. [22] and also with solutions of
Challamel et al. [21] and Reddy and Pang [31]. It is seen that, the integral
formulation does not show ill-posed properties as differential formulation shows.
This finding has been also mentioned by Challamel et al. [21] and Fernandez
et al. [22].

6.2. Distributed load case for thin-walled beams

In this section simply supported, clamped-clamped and clamped-free (can-
tilever) thin-walled box-beams and U-beams, which are defined in Table 1, are
investigated for various τ/L ratios and ξ1 volume fraction values. In calcula-
tions, the volume fraction of local phase (ξ1) is increased from 0 to 1 with steps
of 0.01 and the τ/L ratio is increased form 0.01 up to 0.25 with steps of 0.02.
A distributed load of qy = 0.001 [N/m] is applied to micro-scale thin-walled box-
beams and U-beams. Maximum transverse deflection results of box-beams are
presented in Fig. 7 for simply supported, clamped-clamped and clamped-free
boundary conditions, respectively. Similarly, maximum transverse deflections of
U-beams are given in Fig. 8.

Fig. 7. Transverse deflection of box-beams under distributed load qy = 0.001 [N/m].

When Fig. 7 is investigated it is observed that increasing the τ/L ratio or
decreasing the ξ1 local phase volume fraction reduces the bending rigidity of
the beams thus the deflection increases. This situation is valid for all boundary
conditions. In Fig. 7 blue lines represent the relation between the deflection and
the ξ1 volume fraction for a specific τ/L ratio. And inversely, red lines represent
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the relation between the deflection and the τ/L ratio for a specific ξ1 value. As
obviously seen in Fig. 7a and Fig. 7b blue and red lines have a nonlinear character
for simply supported and clamped-clamped beams. This means that for simply
supported and clamped-clamped boundary conditions the nonlocal τ/L and ξ1

parameters affect the beams nonlinearly. On the other hand, red lines look almost
linear for the clamped-free beams as seen in Fig. 7c. Besides the red and blue
lines, the black lines represent the iso-curves of the transverse deflection. These
iso-curves indicate that the same deflection value can be obtained by various
combinations of τ/L and ξ1 parameters.

Fig. 8. Transverse deflection of U beams under distributed load qy = 0.001 [N/m].

When the deflection of box-beams having a closed cross-section and the de-
flection of U beams having an open cross-section are compared, it is visible that
the box-beams and U-beams show almost the same characteristics for the same
boundary conditions and parameters. The main difference between them is the
value of the deflection. This situation is reasonable as the nonlocal property is
only applied along the beam length and it does not affect the cross-section of
the beams in the current model.

In order to compare the effect of the nonlocal parameters on the beams
with different boundary conditions the deflection values of ξ1 = 0, ξ1 = 0.33,
ξ1 = 0.66 and ξ1 = 1 cases have been normalized by dividing them by their
local (ξ1 = 1) values. The normalized values are presented in Table 2, respec-
tively for clamped-clamped, clamped-free and simply supported boundary con-
ditions.
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Table 2. Normalized values for each boundary condition (V̂ = V/Vξ1=1).

Box-Beam U -Beam
C-C τ/L ξ1 = 0 ξ1 = 0.33 ξ1 = 0.66 ξ1 = 1 ξ1 = 0 ξ1 = 0.33 ξ1 = 0.66 ξ1 = 1

0.05 1.44 1.20 1.08 1 1.44 1.20 1.08 1
hline 0.1 2.10 1.43 1.17 1 2.10 1.43 1.17 1

0.15 2.93 1.67 1.26 1 2.93 1.67 1.26 1
0.2 3.99 1.90 1.32 1 3.99 1.90 1.32 1
0.25 5.29 2.11 1.37 1 5.29 2.11 1.37 1

C-F τ/L ξ1 = 0 ξ1 = 0.33 ξ1 = 0.66 ξ1 = 1 ξ1 = 0 ξ1 = 0.33 ξ1 = 0.66 ξ1 = 1

0.05 1.19 1.09 1.04 1 1.19 1.09 1.04 1
0.1 1.42 1.17 1.07 1 1.42 1.17 1.07 1
0.15 1.66 1.25 1.10 1 1.66 1.25 1.10 1
0.2 1.92 1.33 1.13 1 1.92 1.33 1.13 1
0.25 2.21 1.41 1.16 1 2.21 1.41 1.16 1

S-S τ/L ξ1 = 0 ξ1 = 0.33 ξ1 = 0.66 ξ1 = 1 ξ1 = 0 ξ1 = 0.33 ξ1 = 0.66 ξ1 = 1

0.05 1.02 1.01 1.01 1 1.02 1.01 1.01 1
0.1 1.10 1.05 1.03 1 1.10 1.05 1.03 1
0.15 1.21 1.11 1.05 1 1.21 1.11 1.05 1
0.2 1.38 1.18 1.08 1 1.38 1.18 1.08 1
0.25 1.60 1.25 1.10 1 1.60 1.25 1.10 1

When the normalized values are inspected in Table 2 it can be inferred
that using the same τ/L ratio and ξ1 volume fraction affect the simply sup-
ported beams least (1.6 for ξ1 = 0 and τ/L = 0.25) and clamped-clamped
beams most (5.29 for ξ1 = 0 and τ/L = 0.25). The clamped-free beams lay
between them (2.21 for ξ1 = 0 and τ/L = 0.25). No difference is observed
between the normalized deflection values of box-beams and U-beams as the
nonlocal parameters are only effective along the beam length in the presented
model.

6.3. Torsional load case for thin-walled beams

The torsional analysis of clamped-free box-beams and U-beams have been
realized by applying a torsional moment of 0.1 [µN ·µm] to the free tip of beams.
Surface plots of the axial rotation of the free tip with respect to τ/L and ξ1

values are given in Fig. 9 for box-beams and U-beams.
As seen in Fig. 9 the axial rotation increases as the τ/L ratio gets increased

or ξ1 volume fraction gets decreased. In the surface plots given above blue lines
(relation between Φ and ξ1) are nonlinear, on the other hand red lines (relation
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Fig. 9. Axial rotation of the free tip for (a) box-beams and (b) U-beams Mz = 0.1 [µN · µm].

between Φ and τ/L) is almost linear. Again, black lines represent the iso-curves
of the deformation which can be acquired by using various combinations of τ/L
and ξ1 parameters.

At the free tip of the beams the warping deformation occurs as a result of
torsional loads or torsion coupled deformations. Primary warping profiles of the
cross-sections are given in Fig. 10 for box-beams and U-beams. During primary
warping deformation, the corners of the cross-section displace inward and out-
ward equally. But here it should be noted that the open corners of the U cross-
section will have zero warping displacement.

Fig. 10. Warping profiles for (a) box-beam and (b) U-beam.

The primary warping displacements of the corners of the beams are calculated
using Eq. (2.1c) for the torsional load case described above and they are presented
in Table 3 for box-beams and in Table 4 for U-beams. Here similar to the axial
rotation, the warping displacements of the cross-section increase as the τ/L ratio
increases or ξ1 volume fraction decreases.



688 M. G. Günay

Table 3. Warping displacement of corners for box-beam.

Nonlocal Wwarp [nm] Local
τ/L ξ1 = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ξ1 = 1

0.01 1.65 1.64 1.62 1.61 1.60 1.59 1.58 1.58 1.57 1.56 1.55
0.03 1.90 1.84 1.79 1.75 1.72 1.68 1.65 1.62 1.60 1.57 1.55
0.05 2.18 2.05 1.96 1.88 1.82 1.76 1.71 1.66 1.62 1.59 1.55
0.07 2.47 2.26 2.11 2.00 1.90 1.82 1.76 1.70 1.64 1.59 1.55
0.09 2.76 2.45 2.24 2.09 1.97 1.87 1.79 1.72 1.65 1.60 1.55
0.11 3.06 2.62 2.35 2.17 2.02 1.91 1.81 1.73 1.66 1.60 1.55
0.13 3.37 2.77 2.45 2.23 2.07 1.94 1.84 1.75 1.67 1.61 1.55
0.15 3.67 2.91 2.53 2.28 2.10 1.96 1.85 1.76 1.68 1.61 1.55
0.17 3.98 3.04 2.60 2.33 2.13 1.98 1.87 1.77 1.69 1.61 1.55
0.19 4.29 3.15 2.66 2.37 2.16 2.00 1.88 1.78 1.69 1.62 1.55
0.21 4.61 3.25 2.72 2.40 2.18 2.02 1.89 1.78 1.69 1.62 1.55
0.23 4.93 3.34 2.76 2.43 2.20 2.03 1.90 1.79 1.70 1.62 1.55
0.25 5.25 3.42 2.81 2.45 2.22 2.04 1.91 1.79 1.70 1.62 1.55

Table 4. Warping displacement of corners for U-beam.

Nonlocal Wwarp [nm] Local
τ/L ξ1 = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ξ1 = 1

0.01 6.74 6.70 6.65 6.61 6.57 6.53 6.49 6.49 6.45 6.42 6.41
0.03 7.74 7.52 7.33 7.17 7.02 6.89 6.77 6.77 6.65 6.55 6.41
0.05 8.87 8.37 8.01 7.71 7.44 7.21 7.00 7.00 6.82 6.65 6.41
0.07 10.04 9.21 8.62 8.16 7.78 7.46 7.18 7.18 6.94 6.72 6.41
0.09 11.25 9.98 9.16 8.54 8.05 7.66 7.32 7.32 7.03 6.77 6.41
0.11 12.47 10.69 9.61 8.85 8.27 7.81 7.42 7.42 7.10 6.82 6.41
0.13 13.71 11.32 10.00 9.11 8.45 7.93 7.51 7.51 7.15 6.85 6.41
0.15 14.96 11.88 10.34 9.33 8.60 8.03 7.58 7.58 7.20 6.88 6.41
0.17 16.21 12.39 10.62 9.51 8.72 8.12 7.64 7.64 7.23 6.90 6.41
0.19 17.49 12.85 10.87 9.67 8.83 8.19 7.68 7.68 7.27 6.92 6.41
0.21 18.78 13.26 11.09 9.81 8.92 8.25 7.73 7.73 7.30 6.93 6.41
0.23 20.08 13.62 11.29 9.93 9.00 8.31 7.77 7.77 7.32 6.95 6.41
0.25 21.40 13.96 11.46 10.03 9.07 8.36 7.80 7.80 7.35 6.96 6.41

6.4. Concentrated load case for thin-walled cantilever beams

In this example, a concentrated load of 0.01 [µN] has been applied to the
free end of the cantilever box-beams and U-beams. In calculations, the volume
fraction of the local phase (ξ1) is increased from 0 to 1 with steps of 0.01 and the
τ/L ratio is increased from 0.025 up to 0.25 with steps of 0.025. Surface plots
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of the transverse deflection of the free tip with respect to τ/L and ξ1 values are
given in Fig. 11 for box-beams and U beams. As seen in Fig. 11 the developed
model is capable of solving the cantilever beam problem. It is seen that, reducing
the local volume fraction (ξ1) or increasing the nonlocal parameter (τ/L) softens
the beam stiffness as expected and the deflection increases with this softening.

Fig. 11. Transverse deflection of the free tip for (a) box and (b) U-beams, Fy = 0.01 [µN].

Additional to transverse deflection, U-beams shows coupled displacement and
rotation because of their open cross-section. As an example, for the cantilever
beam given in Fig. 11b the coupled displacement and rotation values are given

Table 5. Coupled displacement of free and for cantilever U-beam.

Nonlocal U [µm] Local
τ/L ξ1 = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ξ1 = 1

0.025 0.076 0.075 0.075 0.074 0.074 0.073 0.073 0.072 0.072 0.072 0.071
0.050 0.082 0.079 0.078 0.076 0.075 0.075 0.074 0.073 0.073 0.072 0.071
0.075 0.088 0.083 0.081 0.079 0.077 0.076 0.075 0.074 0.073 0.072 0.071
0.100 0.094 0.087 0.084 0.081 0.079 0.078 0.076 0.075 0.074 0.073 0.071
0.125 0.101 0.091 0.087 0.084 0.081 0.079 0.077 0.076 0.074 0.073 0.071
0.150 0.107 0.095 0.090 0.086 0.083 0.081 0.079 0.077 0.075 0.073 0.071
0.175 0.114 0.099 0.093 0.089 0.085 0.082 0.080 0.077 0.075 0.073 0.071
0.200 0.121 0.103 0.096 0.091 0.087 0.084 0.081 0.078 0.076 0.074 0.071
0.225 0.129 0.107 0.099 0.093 0.089 0.085 0.082 0.079 0.077 0.075 0.071
0.250 0.135 0.111 0.102 0.096 0.091 0.086 0.083 0.080 0.077 0.075 0.071
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Table 6. Coupled axial rotation of free and for cantilever U-beam.

Nonlocal φ [rad] Local
τ/L ξ1 = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ξ1 = 1

0.025 0.126 0.124 0.123 0.122 0.121 0.121 0.120 0.120 0.119 0.119 0.117
0.050 0.136 0.130 0.128 0.126 0.125 0.123 0.122 0.121 0.120 0.119 0.117
0.075 0.146 0.137 0.133 0.130 0.128 0.126 0.124 0.122 0.121 0.119 0.117
0.100 0.156 0.143 0.138 0.134 0.131 0.128 0.126 0.124 0.122 0.120 0.117
0.125 0.166 0.150 0.143 0.138 0.134 0.131 0.128 0.125 0.123 0.120 0.117
0.150 0.177 0.156 0.148 0.142 0.137 0.133 0.130 0.126 0.124 0.121 0.117
0.175 0.188 0.163 0.153 0.146 0.141 0.136 0.131 0.128 0.124 0.121 0.117
0.200 0.200 0.170 0.158 0.150 0.144 0.138 0.133 0.129 0.125 0.122 0.117
0.225 0.213 0.177 0.164 0.154 0.147 0.140 0.135 0.130 0.126 0.123 0.117
0.250 0.223 0.184 0.169 0.158 0.150 0.143 0.137 0.131 0.127 0.124 0.117

in Table 5 and Table 6. As seen in the following tables, the coupled displace-
ments and rotations behaves similar to primary displacement for same nonlocal
parameters.

7. Conclusion

The main goal of this work is to develop a model for static analysis of small-
scale thin-walled beams showing nonlocal property. The developed model is ob-
tained by implementing integral formulation of local-nonlocal two-phase consti-
tutive relations into thin-walled beams theory. The developed model includes
flexural-torsional coupling, warping effects and as well as nonlocal elasticity. So-
lution of the model is realized by the displacement based finite element method.
The performed validations show that the developed model is compatible with
the results and solutions available in the literature. Additionally, the developed
model is able solve nonlocal cantilever beams under concentrated tip load. This
is possible because of the constitutive relations are directly modelled using the
integral formulation of the nonlocal elasticity theory. Another advantage of using
the integral formulation is that it gives opportunity to change the nonlocal kernel
function of the model easily.

As numerical examples, effects of the volume fraction and the nonlocal pa-
rameter on the deformation of the small-scale box-beams and U-beams are in-
vestigated for various conditions. The following findings are observed.
• The stiffness of the beam reduces as the τ/L ratio gets increased or the ξ1

local phase volume fraction gets decreased.
• The relation between the deformation and nonlocal parameters τ/L and ξ1

usually shows a nonlinear character for investigated boundary conditions.
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But for clamped-free beams the relation between τ/L and deformation
looks linear both for transverse deflection and axial rotation cases.
• When boundary conditions are compared it is observed that the clamped-

clamped beams get affected most and the simply supported beams least
by the non-local parameters.
• For beams showing flexural-torsional coupling, the coupled displacements

and rotations get affected by the nonlocal parameters similar to primary
displacement.
• The warping of the cross-section gets affected by nonlocal parameters,

depended on the axial rotation or flexural-torsional coupling.
• As the developed model includes two independent parameters (τ and ξ),

the same displacement value can be obtained by various combinations of
these parameters.
• Thanks to integral formulation the developed model is able to solve non-

local cantilever beams under a concentrated tip load.
The presented model in this study can be enhanced by including shear deforma-
tion, cross-sectional deformation and nonlinear formulation. Other size depended
theories such as the strain gradient theory, the micro-polar theory may be im-
plemented in the model. Also, nonlocality can be applied along the cross-section
together with cross-sectional deformation.

Appendix

A.1. Definitions of the rs(s), rn(s) distances and the warping functions

rs(s) = (x(s)− xp)
dx

ds
+ (y(s)− yp)

dy

ds
,(A.1a)

rn(s) = (x(s)− xp)
dy

ds
− (y(s)− yp)

dx

ds
,(A.1b)

F1(s) =

s∫
0

(rn(s)) ds− δc

s∫
0

( ∮
rn(s) ds

h(s) ·Gsz(s) · L

)
ds,(A.1c)

F2(s) = δc

s∫
0

(
2−

2
∮
ds

h(s) ·Gsz(s) · L

)
ds− rs(s),(A.1d)

L =

∮
ds

h(s) ·Gsz(s)
,(A.1e)

where h is the thickness and Gsz is the effective shear stiffness. Take δ0 = 1,
δc = 0 for open cross-sections or δ0 = 0, δc = 1 for closed cross-sections.
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A.2. Elements of the [eij ] beam stiffness matrix

e11 =

∫
s

a11 ds,(A.2a)

e12 =

∫
s

a11(s) ds,(A.2b)

e13 =

∫
s

a11y(s) ds,(A.2c)

e14 =

∫
s

a11F1(s) ds,(A.2d)

e22 =

∫
s

(
a11x(s)2 + d11

(
dy

ds

)2)
ds,(A.2e)

e23 =

∫
s

(
a11x(s)y(s)− d11

dx

ds

dy

ds

)
ds,(A.2f)

e24 =

∫
s

(
a11x(s)F1(s) + d11F2(s)

dy

ds

)
ds,(A.2g)

e33 =

∫
s

(
a11y(s)2 + d11

(
dx

ds

)2)
ds,(A.2h)

e34 =

∫
s

(
a11y(s)F1(s)− d11F2(s)

dx

ds

)
ds,(A.2i)

e44 =

∫
s

(
a11F1(s)2 + d11F2(s)2

)
ds,(A.2j)

e55 =

∫
s

(
a66

(
δc

2Ω

h(s)Gsz(s)L

)2

+ d66

(
δc

2β

h(s)Gsz(s)L
+ δ02

)2)
ds.(A.2k)

A.3. The closed form solutions

A.3.1. Tip deflection of cantilever beam under concentrated transverse end
load [21]

(A.3a) w(L) = P
L3

3EI

(
1 +

3lc
L2

)
.

A.3.2. Mid deflection of simply supported beam under distributed transverse
load [31]

(A.3b) w

(
L

2

)
= q0

L4

384EI
(5 + 48 · µ̄), µ̄ =

(
e0.li
L

)2

.
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