PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the characteristic and stability of iron diet supplements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The iron diet supplements: AproFER 1000 and AproTHEM were subjected to various chemical, microbial and magnetic analysis. The microbial analysis revealed no presence of pathogenic bacteria in the studied products. No signifi cant changes in iron content or forms (bivalent/trivalent) were observed in EPR analysis of supplements stored at different conditions for a long period of time. The chemical and magnetic analysis showed that both AproFER 1000 and AproTHEM contain a high concentration of bivalent iron so they can be used as an iron diet supplements.
Rocznik
Strony
60--67
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Piastów Ave. 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Piastów Ave. 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology Szczecin, Department of Physics, Piastów 17, 70-310 Szczecin, Poland
autor
  • West Pomeranian University of Technology Szczecin, Department of Physics, Piastów 17, 70-310 Szczecin, Poland
autor
  • West Pomeranian University of Technology Szczecin, Department of Physics, Piastów 17, 70-310 Szczecin, Poland
  • West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Piastów Ave. 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Scholl T.O. & Reilly T. (2000). Anemia iron and pregnancy outcome J. Nut. 130 443S-447S. PubMed ID: 10721924.
  • 2. Gray-Donald K. Jacobs-Starkey L. & Johnson-Down L. (2000). Food habits of Canadians: reduction in fat intake over a generation. Can. J. Public Health 91 381–385. PubMed ID: 11089294.
  • 3. Goddard A.F. James M.W. McIntyre A.S. & Scott B.B. (2011) Guidelines for the management of iron deficiency anemia. Gut 60(10) 1309–1316. DOI: 10.1136/gut.2010.228874.
  • 4. Landahl G. Adolfsson P. Borjesson M. Mannheimer C. & Rodjer S. (2005). Iron deficiency and anemia: a common problem in female elite soccer players. Int. J. Sport Nut. Exerc. Metab. 15 690–692.
  • 5. Brion M.J.A. Leary S.D. Smith G.D. McArdle H.J. & Ness A.R. (2008). Maternal anemia iron intake in pregnancy and offspring blood pressure in the Avon Longitudinal study of parents and children. Am. J. Clin. Nut. 88 1126–1133. DOI: 10.1093/ajcn/88.4.1126.
  • 6. Melis M.A. Cau M. Congiu R. Sole G. Barella S. Cao A. Westerman M. Cazzola M. & Galanello R. (2008). A mutation in the TMPRSS6 gene encoding a transmembrane serine protease that suppresses hepcidin production in familial iron deficiency anemia refractory to oral iron. Haematologica 93 1473–1479. DOI: 10.3324/haematol.13342.
  • 7. Rohner F. Woodruff B.A. Aaron G.J. Yakes E.A. Lebanan M.A.O. Rayco-Solon P. & Saniel O.P. (2013). Infant and young child feeding practices in urban Philippines and their associations with stunting anemia and deficiencies of iron and vitamin A. Food and Nut. Bull. 34 17–34.
  • 8. Camaschella C. (2015). Iron-Deficiency Anemia. N. Eng. J. Med. 72 1832–1843. DOI: 10.1056/NEJMra1401038.
  • 9. Quintero-Gutierrez A.G. Mariaca-Gaspar G.I. Villa-nueva-Sanchez J. Polo J. Rodrguez C. & Gonzalez-Rosendo G. (2012). Acceptability and use of heme-iron concentrate product added to chocolate biscuit filling as an alternative source of a highly available form of iron. CYTA-J. Food 10 112. DOI: 10.1080/19476337.2011.596284.
  • 10. Huma N. Salim-Ur-Rehman Anjum F.M. Murtaza M.A. & Sheikh M.A. (2007). Food fortification strategy – preventing iron deficiency anemia: a review. Crit. Rev. Food Sci. Nut. 47 259–265. DOI: 10.1080/10408390600698262.
  • 11. West A.R. & Oates P.S. (2008). Mechanisms of heme iron absorption: current questions and controversies. W.J. Gastroenterol. 14 4101–4110. DOI: 10.3748/wjg.14.4101.
  • 12. Andrews N.C. (1999). Disorders of iron metabolism. N. Eng. J. Med. 341(26) 1986–1995. DOI: 10.1056/NEJM199912233412607.
  • 13. Guskos N. Glenis S. Likodimos V. Typek J. Fuks H. Wabia M. Szymczak R. Lin C.L. & Perkowska T.A. (2003). Influence of water molecule coordination on the magnetic properties of polyamine copper dinitrate complexes. J. App. Phys. 93(12) 9834–9838. DOI: 10.1063/1.1574593.
  • 14. Kuriata J. Sadlowski L. Lipinski E. Stawarczyk W. & Guskos N. (1988). EPR Study of Cu(II) Ions in Caeruloplasmin Acta Phys. Pol. A. 73 543–546.
  • 15. Brittenham G.M. Sheth S. Allen C.J. Farrell D.E. (2001). Noninvasive methods for quantitative assessment of transfusional iron overload in sickle cell disease. Semin. Hematol. 38 37–56. PMID: 11206960.
  • 16. Ost T.W.B. Munro A.W. Mowat C.G. Taylor P.R. Pesseguiero A. Fulco A.J. Cho A.K. Cheesman M.A. Walkinshaw M.D. & Chapman S.K. (2001). Structural and spectroscopic analysis of the F393H mutant of flavocytochrome P450 BM3. Biochemistry 40(45) 13430–13438. PMID:11695889.
  • 17. Brittenham G.M. & Badman D.G. (2003). Noninvasive measurement of iron: report of an NIDDK workshop. Blood. 101(1) 15–9. DOI: 10.1182/blood-2002-06-1723.
  • 18. Canavese C. Bergamo D. Ciccone G. Longo F. Fop F. Thea A. Martina G. & Piga A. (2004). Validation of serum ferritin values by magnetic susceptometry in predicting iron overload in dialysis patients. Kidney Int. 65(3) 1091–1098. DOI: 10.1111/j.1523-1755.2004.00480.x.
  • 19. Ślawska-Waniewska A. Mosiniewicz-Szablewska E. Nedelko N. Galazka-Friedman J. & Friedman A. (2004). Magnetic studies of iron-entities in human tissues. J. Magn. Magn. Mater. 272–276 2417–2419. DOI: https://doi.org/10.1016/j.jmmm.2003.12.843.
  • 20. Huang Z. Shiva S. Kim-Shapiro D.B. Patel R.P. Ringwood L.A. Irby C.E. Huang K.T. Ho C. Hogg N. Schechter A.N. & Gladwin M.T. (2005). Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control. J. Clin. Invest. 115(8) 2099–2107. DOI: 10.1172/JCI24650.
  • 21. Moreira L.M. Poli A.L. Costa-Filho A.J. & Imasato H. (2006). Pentacoordinate and hexacoordinate ferric hemes in acid medium: EPR UV–Vis and CD studies of the giant extra-cellular hemoglobin of Glossoscolex paulistus. Biophys. Chem. 124 62–72. DOI: https://doi.org/10.1016/j.bpc.2006.05.030.
  • 22. Dunne J. Caron A. Menu P. Alayash A. Buehler P.W. Wilson M.T. Silaghi-Dumitrescu R. Faivre B. & Cooper C.E. (2006). Ascorbate removes key precursors to oxidative damage by cell-free haemoglobin in vitro and in vivo. Biochem. J. 399(3) 513–524. DOI: 10.1042/BJ20060341.
  • 23. Moreira L.M. Poli A.L. Lyon J.P. Saade J. Costa-Filho A.J. & Imasato H. (2008). Ferric species of the giant extracellular hemoglobin of Glossoscolex paulistus as function of pH: an EPR study on the irreversibility of the heme transitions. Comp. Biochem. Physiol. B 150 (3) 292–300. DOI: DOI:10.1016/j.cbpb.2008.03.020.
  • 24. Krzyminiewski R. Kruczynski Z. Dobosz B. Zaja B. Mackiewicz A. Leporowska E. & Folwaczna S. (2011). EPR Study of Iron ion complexes in human blood. Appl. Magn. Reson. 40(3) 321–330. DOI: I 10.1007/s00723-011-0219-3.
  • 25. Ibragimova I. Chushnikov A.I Cherepnev G.V. Petukhov V.Y. & Zheglov E.P. (2014). EPR study of iron status in human body during intensive physical activity. Biofizika 59 425–430. DOI: https://doi.org/10.1134/S000635091403008.
  • 26. Davydov R. Im S. Shanmugam M. Gunderson W.A. Pearl N.M. Hoffman B.M. & Waskell L. (2016). Role of the Proximal Cysteine Hydrogen Bonding Interaction in Cytochrome P450 2B4 Studied by Cryoreduction Electron Para-magnetic Resonance and Electron-Nuclear Double Resonance Spectroscopy. Biochemistry 55(6) 869–883. DOI: 0.1021/acs.biochem.5b00744.
  • 27. Folajtar D.A. & Chasteen N.D. (1982). Measurment of nonsynergistic anion binding to transferrin by EPR difference spectroscopy. J. Am. Chem. Soc. 104(21) 5775–-5780. DOI: 10.1021/ja00385a036.
  • 28. Liu H. Su Q. Sheng D. Zheng W. & Wang X. (2017). Comparison of red blood cells from gastric cancer patients and healthy persons using FTIR spectroscopy. J. Mol. Struct. 1130 33–37. DOI: https://doi.org/10.1016/j.molstruc.2016.10.019.
  • 29. Chylińska M. Szymańska-Chargot M. & Zdunek A. (2016). FT-IR and FT-Raman characterization of non-cellulosic polysaccharides fractions isolated from plant cell wall. Carbohydr. Polym. 154 48–54. DOI: 10.1016/j.carbpol.2016.07.121.
  • 30. Romano N. Santos M. Mobili P. Vega R. & Gómez-Zavaglia A. (2016). Effect of sucrose concentration on the composition of enzymatically synthesized short-chain fructo-oligosaccharides as determined by FTIR and multivariate analysis. Food Chem. 202 467–475. DOI: 10.1016/j.foodchem.2016.02.002.
  • 31. Bureau S. Ruiz D. Reich M. Gouble B. Bertrand D. Audergon J.M. & Renard C.M.G.C. (2009). Application of ATR-FTIR for a rapid and simultaneous determination of sugars and organic acids in apricot fruit. Food Chem. 115 1133. DOI: https://doi.org/10.1016/j.foodchem.2008.12.100.
  • 32. Zolnierkiewicz G. Guskos N. Typek J. Anagnostakis E.A. Blonska-Tabero A. & Bosacka M. (2009). Competition of magnetic interactions in M3Fe4V6O24 (M(II) = Zn Cu Mn Mg) compounds studied by EPR J. Alloys Compd 471 28–32. DOI: https://doi.org/10.1016/j.jallcom.2008.03.109.
  • 33. Weinstein J.S. Varallyay C.G. Dosa E. Gahramanov S. Hamilton B. Rooney W.D. Muldoon L.L. & Neuwelt E.A. (2010). Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies a review. J. Cereb. Blood Flow Metab. 30 15–35. DOI: https://doi.org/10.1038/jcbfm.2009.192.
  • 34. Grady J.K. Mason A.B. Woodworth R.C. & Chasteen N.D. (1995). The effect of salt and site-directed mutations on the iron(III)-binding site of human serum transferrin as probed by EPR spectroscopy. Biochem. J. 309 403–410. DOI: 10.1042/bj3090403.
  • 35. Scullane M.I. White L.K. & Chasteen N.D. (1982). An efficient approach to computer simulation of EPR spectra of high-spin Fe(III) in rhombic ligand fields. J. Magn. Reason. 47(3) 383–397. DOI: https://doi.org/10.1016/0022-2364(82)90207-4.
  • 36. Yang A.S. & Gaffney B.J. (1987). Determination of relative spin concentration in some high-spin ferric proteins using E/D-distribution in electron paramagnetic resonance simulations. Biophys. J. 51(1) 55–67. DOI: doi: 10.1016/S0006-3495(87)83311-8
  • 37. Zhao G. Arosio P. & Chasteen N.D. (2006). Iron(II) and hydrogen peroxide detoxification by human H-chain ferritin. An EPR spin-trapping study. Biochemistry 45(10) 3429–3436. DOI: 10.1021/bi052443r.
  • 38. Duclund L. & Toftlund H. (2000). Electron paramagnetic resonance characteristics of some non-heme low-spin iron(III) complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 56(2) 331–340. DOI: https://doi.org/10.1016/S1386-1425(99)00243-7.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b35bfab-9ea5-4cea-ab21-726e9e8c79bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.