PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Touchard wavelet to simulate numerical solutions to fractional pantograph differential equations

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a new operational numerical method based on Touchard wavelets for solving fractional pantograph differential equations. First, we present an operational matrix of fractional integration as well as the fractional derivative of the Touchard wavelets. Then, by approximating the fractional derivative of the unknown function in terms of the Touchard wavelets and also by using collocation method, the original problem is reduced to a system of algebraic equations. Finally, to show the accuracy and the validity of the proposed technique, we provide some numerical examples.
Wydawca
Rocznik
Strony
103--116
Opis fizyczny
Bibliogr. 47 poz., 1 mapa, wykr.
Twórcy
  • Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
  • Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
  • Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
Bibliografia
  • [1] N. Aghazadeh and A. A. Khajehnasiri, Solving nonlinear two-dimensional Volterra integro-differential equations by block-pulse functions, Math. Sci. 7 (2013), 1-6.
  • [2] S. Ale Ebrahim, A. Ashtari, M. Z. Pedram and N. Ale Ebrahim, Publication trends in drug delivery and magnetic nanoparticles, Nanoscale Res. Lett. 14 (2019), 1-14.
  • [3] A. Arikoglu and I. Ozkol, Solution of fractional differential equations by using differential transform method, Chaos Solitons Fractals 34 (2007), no. 5, 1473-1481.
  • [4] R. Bagley, On the fractional order initial value problem and its engineering applications, in: Fractional Calculus and its Applications, Nihon University, Tokyo (1990), 12-20.
  • [5] R. L. Bagley and P. J. Torvik, Fractional calculus in the transient analysis of viscoelastically damped structures, J. AIAA. 23 (1985), 918-925.
  • [6] K. Balachandran, S. Kiruthika and J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci. Ser. B (Engl. Ed.) 33 (2013), no. 3, 712-720.
  • [7] S. Behera and S. S. Ray, An operational matrix based scheme for numerical solutions of nonlinear weakly singular partial integro-differential equations, Appl. Math. Comput. 367 (2020), Article ID 124771.
  • [8] S. Behera and S. S. Ray, An efficient numerical method based on Euler wavelets for solving fractional order pantograph Volterra delay-integro-differential equations, J. Comput. Appl. Math. 406 (2022), Paper No. 113825.
  • [9] S. Behera and S. S. Ray, A wavelet-based novel technique for linear and nonlinear fractional Volterra-Fredholm integro-differential equations, Comput. Appl. Math. 41 (2022), no. 2, Paper No. 77.
  • [10] A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Numer. Math. Sci. Comput., Oxford University, New York, 2003.
  • [11] X. Chen and L. Wang, The variational iteration method for solving a neutral functional-differential equation with proportional delays, Comput. Math. Appl. 59 (2010), no. 8, 2696-2702.
  • [12] S. Das, Analytical solution of a fractional diffusion equation by variational iteration method, Comput. Math. Appl. 57 (2009), no. 3, 483-487.
  • [13] A. El-Ajou and O. Abu Arqub, Solving fractional two-point boundary value problemsusing continuous analytic method, Ain Shams Eng. J 4 (2013), 539-547.
  • [14] A. El-Ajou, M. Al-Smadi, M. Oqielat S. Momani and S. Hadid, Smooth expansion tosolve high-order linear conformable fractional PDEs via residual power seriesmethod: Applications to physical and engineering equations, Ain Shams Eng. J. 11 (2020), no. 4, 1243-1254.
  • [15] N. Engheta, On fractional calculus and fractional multipoles in electromagnetism, IEEE Trans. Antennas Propagation 44 (1996), no. 4, 554-566.
  • [16] T. Eriqat, A. El-Ajou, M. Oqielat, Z. Al-Zhour and S. Momani, A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations, Chaos Solitons Fractals 138 (2020), 1-17.
  • [17] M. Ghasemi, Y. Jalilian and J. J. Trujillo, Existence and numerical simulation of solutions for nonlinear fractional pantograph equations, Int. J. Comput. Math. 94 (2017), no. 10, 2041-2062.
  • [18] S. M. Hosseini, The adaptive operational Tau method for systems of ODEs, J. Comput. Appl. Math. 231 (2009), no. 1, 24-38.
  • [19] A. Isah, C. Phang and P. Phang, Collocation method based on Genocchi operational matrix for solving generalized fractional pantograph equations, Int. J. Differ. Equ. 7 (2017), Article ID 2097317.
  • [20] S. Kazem, Exact solution of some linear fractional differential equations by Laplace transform, Int. J. Nonlinear Sci. 16 (2013), no. 1, 3-11.
  • [21] A. A. Khajehnasiri and R. Ezzati, Boubaker polynomials and their applications for solving fractional two-dimensional nonlinear partial integro-differential Volterra integral equations, Comput. Appl. Math. 41 (2022), no. 2, Paper No. 82.
  • [22] A. A. Khajehnasiri, R. Ezzati and M. Afshar Kermani, Solving fractional two-dimensional nonlinear partial Volterra integral equation by using Bernoulli wavelet, Iran. J. Sci. Technol. Trans. A Sci. 45 (2021), no. 3, 983-995.
  • [23] A. A. Khajehnasiri, R. Ezzati and M. Afshar Kermani, Solving systems of fractional two-dimensional nonlinear partial Volterra integral equations by using Haar wavelets, J. Appl. Anal. 27 (2021), no. 2, 239-257.
  • [24] A. A. Khajehnasiri and M. Safavi, Solving fractional Black-Scholes equation by using Boubaker functions, Math. Methods Appl. Sci. 44 (2021), no. 11, 8505-8515.
  • [25] A. A. Kilbas and M. Saigo, On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations, Integral Transform. Spec. Funct. 4 (1996), no. 4, 355-370.
  • [26] D. S. Kim and T. Kim, On degenerate Bell numbers and polynomials, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111 (2017), no. 2, 435-446.
  • [27] T. Kim, O. Herscovici, T. Mansour and S.-H. Rim, Differential equations for p, q-Touchard polynomials, Open Math. 14 (2016), no. 1, 908-912.
  • [28] V. V. Kulish and J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids. Eng. 124 (2002), 803-806.
  • [29] P. Mokhtary, F. Ghoreishi and H. M. Srivastava, The Müntz-LegendreTau method for fractional differential equations, Appl. Math. Model. 40 (2016), no. 2, 671-684.
  • [30] S. Momani, Non-perturbative analytical solutions of the space- and time-fractional Burgers equations, Chaos Solitons Fractals 28 (2006), no. 4, 930-937.
  • [31] S. Momani and Z. Odibat, Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Comput. Math. Appl. 54 (2007), no. 7-8, 910-919.
  • [32] S. Nemati, P. Lima and S. Sedaghat, An effective numerical method for solving fractional pantograph differential equations using modification of hat functions, Appl. Numer. Math. 131 (2018), 174-189.
  • [33] F. Nourian, M. Lakestani, S. Sabermahani and Y. Ordokhani, Touchard wavelet technique for solving time-fractional Black-Scholes model, Comput. Appl. Math. 41 (2022), no. 4, Paper No. 150.
  • [34] J. Ockendon and A. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. Lond. A 322 (1971), 447-468.
  • [35] I. Podlubny, Fractional Differential Equations, Math. Sci. Eng. 198, Academic Press, San Diego, 1999.
  • [36] K. Rabiei and Y. Ordokhani, Solving fractional pantograph delay differential equations via fractional-order Boubaker polynomials, Eng. Computers 35 (2018), 1431-1441.
  • [37] P. Rahimkhani, Y. Ordokhani and E. Babolian, Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet, J. Comput. Appl. Math. 309 (2017), 493-510.
  • [38] S. Sabermahani and Y. Ordokhani, Fibonacci wavelets and Galerkin method to investigate fractional optimal control problems with bibliometric analysis, J. Vib. Control 27 (2021), no. 15-16, 1778-1792.
  • [39] S. Sabermahani and Y. Ordokhani, General Lagrange-hybrid functions and numerical solution of differential equations containing piecewise constant delays with bibliometric analysis, Appl. Math. Comput. 395 (2021), Paper No. 125847.
  • [40] M. Safavi, Solutions to fractional system of heat-and wave-like equations with variational iteration method, J. Fract. Calc. Appl. 4 (2013), no. 2, 177-190.
  • [41] M. Safavi, A. A. Khajehnasiri, A. Jafari and J. Banar, A new approach to numerical solution of nonlinear partial mixed Volterra-Fredholm integral equations via two-dimensional triangular functions, Malays. J. Math. Sci. 15 (2021), no. 3, 489-507.
  • [42] S. Saha Ray, A new approach by two-dimensional wavelets operational matrix method for solving variable-order fractional partial integro-differential equations, Numer. Methods Partial Differential Equations 37 (2021), no. 1, 341-359.
  • [43] L. Shi, X. Ding, Z. Chen and Q. Ma, A new class of operational matrices method for solving fractional neutral pantograph differential equations, Adv. Difference Equ. 2018 (2018), Paper No. 94.
  • [44] E. Tohidi, A. H. Bhrawy and K. Erfani, A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation, Appl. Math. Model. 37 (2013), no. 6, 4283-4294.
  • [45] J. Touchard, Sur les cycles des substitutions, Acta Math. 70 (1939), no. 1, 243-297.
  • [46] L.-P. Wang, Y.-M. Chen, D.-Y. Liu and D. Boutat, Numerical algorithm to solve generalized fractional pantograph equations with variable coefficients based on shifted Chebyshev polynomials, Int. J. Comput. Math. 96 (2019), no. 12, 2487-2510.
  • [47] W.-S. Wang and S.-F. Li, On the one-leg θ-methods for solving nonlinear neutral functional differential equations, Appl. Math. Comput. 193 (2007), no. 1, 285-301.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b32460d-188c-4ebd-8468-304024038a70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.