PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Modeling of Superplastic Punchless Deep Drawing Process of a TI-6AL-4V Titanium Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The numerical results of superplastic punchless deep drawing of the Ti-6Al-4V titanium alloy were presented in this paper. The material behavior subjected to the forming process was characterized by deformation-microstructure constitutive equations including the grain growth. Superplastic stress-strain characteristics used in the numerical simulations were computed with the application of authorial program. The explicit integration scheme is used in solving differential equations. The numerical simulations of the super-elastic deep drawing were made with finite element method analysis. The von Mises stress distribution in the blow-forming process was obtained. The possible faults of extrusions caused by the improper load history as well as unsuitable pressure were also presented in this paper. The numerical simulations included in this research allow for the proper choice of material and drawing parameters which can help to optimize the superplastic forming process.
Twórcy
  • Department of Materials Forming and Processing, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Department of Materials Forming and Processing, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Adamus J., Winowiecka J., Dyner M., Lacki P. Numerical simulation of forming titanium thin-wall panels with stiffeners. Advances in Science and Technology Research Journal, 12(1), 2018, 54-62.
  • 2. Alizadeh R., Mahmudi R., Ngan A.H.W., Huang Y. and Langdon T.G. Superplasticity of a nano-grained Mg-Gd-Y-Zr alloy processed by high-pressure torsion. Materials Science and Engineering A, 651, 2016, 786-794.
  • 3. Berdichevskij E.G. Use of the superplasticity effect of materials in engineering technology. IOP Con-ference Series: Materials Science and Engineering, 441, 2018, 1-5.
  • 4. Bonet J., Wood R.D., Said R., Curtis R.V. and Garriga-Majo D. Numerical simulation of the super-plastic forming of dental and medical prostheses. Biomechanics and Modeling in Mechanobiology, 1(3), 2002, 177-196.
  • 5. Chen M. H., Xue Y.H., Rui Y.L., Zhou J.H. and Wang M. Numerical Simulation and Experimental Investigation of High Strain Rate Superplastic Forming (SPF) of Al-6Mg-0.2Sc Alloy. Materials Science Forum, 551-552, 2007, 287-292.
  • 6. Cheong B.H., Lin J. and Ball A.A. Modeling of the hardening characteristics for superplastic materials. Journal of Strain Analysis for Engineering Design, 35(3), 2000, 149-157.
  • 7. Clarke D.R., Suresh S. and Ward I.M. (Eds.) Superplasticity in metals and ceramics. Cambridge University Press, 1997.
  • 8. Dunne F. and Petrinic N. Introduction to Computational Plasticity. Oxford University Press, 2005.
  • 9. Dziubińska A., Majerski K., Winiarski G. Investigation of the effect of forging temperature on the microstructure of grade 5 titanium ELI. Advances in Science and Technology Research Journal, 11(4), 2017, 147-158.
  • 10. Fan W. Flow behavior and microstructural evolution during superplastic deformation of AA8090 aluminium-lithium Alloy. PhD thesis, 1998.
  • 11. Galiyev A. and Kaibyshev R. Superplasticity in a magnesium alloy subjected to isothermal rolling. Scripta Materialia, 51, 2004, 89-90.
  • 12. Gomez-Gallegos A., Mandal P., Gonzales D., Zuelli N. and Blackwell P. Studies on Titanium Alloys for Aerospace Applications. Defect and Diffusion Forum, 385, 2018, 419-423.
  • 13. Henshall C.A., Wadsworth J., Reynolds M.J. and Barnes A.J. Design and manufacture of a superplas-tic-formed aluminium-lithium component. Materials & Design, 8(6), 1987, 324-330.
  • 14. Hosford W.F. and Caddel R.M. Metal forming: Mechanics and Metallurgy. 4th Edition. Cambridge University Press, 2011.
  • 15. Kawasaki M. and Langdon T.G. Developing Superplasticity in Ultrafine-Grained Metals. Acta Physica Polonica a, 128(4), 2015, 470-478.
  • 16. Kharchenko V.V. Viscoplastic models in simulation of high strain-rate behavior of materials. Strength of Materials, 34(3), 2002, 219-222.
  • 17. Khraisheh M., Zbib H., Hamilton C. and Bayoumi A. Constitutive modeling of superplastic deforma-tion. Part I: Theory and experiments. International Journal of Plasticity, 13(1-2), 1997, 143-164.
  • 18. Kotov A.D., Mikhailovskay A.V., Mosleh A.O., Pourcelot T.P., Prosviryakov A.S. and Portnoi V.K. Superplasticity of an Ultrafine-Grained Ti-4% Al- 1% V-3% Mo Alloy. Physics of Metals and Metal-lography, 120(1), 2019, 60-68.
  • 19. Langdon T.G. Thirty Years of Superplastic Ultrafine-Grained Materials: Examining the Legacy of Oscar Kaibyshev. Defect and Diffusion Forum, 385, 2018, 3-8.
  • 20. Lin J. and Dunne F.P.F. Modelling grain growth evolution and necking in superplastic blow-forming. International Journal of Mechanical Sciences, 43(3), 2001, 595-609.
  • 21. Lin J. and Yang J. GA-based multiple objective optimisation for determining viscoplastic constitutive equations for superplastic alloys. International Journal of Plasticity, 15(11), 1999, 1181-1196.
  • 22. Majidi O., Jahazi M. and Bombadier N. Finite Element Simulation of High-Speed Blow Forming of an Automotive Component. Metals, 8(11), 2018, 1-12.
  • 23. Majidi O., Jahazi M. and Bombardier N. A viscoplastic model based on a variable strain rate sensitiv-ity index for superplastic sheet metals. International Journal of Material Forming, 12(4), 2019, 693-702.
  • 24. Mosleh A., Mikhaylovskaya A., Kotov A., Pourcelot T. , Aksenov S., Kwame J. and Portnoy V. Modelling of the Superplastic Deformation of the Near-α Titanium Alloy (Ti-2.5Al-1.8Mn) Using Arrhenius- Type Constitutive Model and Artificial Neural Network. Metals, 7(12), 2017, 1-15.
  • 25. Mosleh A.O., Mikhaylovskaya A.V., Kotov A.D. and Kwame J.S. Experimental, modeling and simu-lation of an approach for optimizing the superplastic forming of Ti-6%Al-4%V titanium alloy. Journal of Manufacturing Processes, 45, 2019, 262-272.
  • 26. Mukai T., Wanatabe H. and Higashi K. Application of superplasticity in commercial magnesium alloy for fabrication of structural components. Materials Science and Technology, 16(11-12), 2013, 1314-1319.
  • 27. Muthusamy B. and Ramanathan K. Numerical simulation and analysis of superplastic forming in Ti-6Al-4V alloy. International Journal of Applied Engineering Research, 55(10), 2015, 3746-3750.
  • 28. Nieh T.G., Wadsworth J. and Sherby O.D. Superplasticity in metals and ceramics. Cambridge Uni-versity Press, 1997.
  • 29. Oh-ishi K., Boydon J. and McNelley T.R. Processing, deformation, and failure in superplastic alumi-num alloys: Applications of orientation-imaging microscopy. Journal of Materials Engineering and Performance, 13(6), 2004, 710-719.
  • 30. Padmanabhan K.A., Vasin R.A. and Enikeev F.U. Superplastic flow: Phenomonology and Mechanics. Springer-Verlag, 2001.
  • 31. Patel V.V. and Badheka V. Influence of Friction Stir Processed Parameters on Superplasticity of Al-Zn- Mg-Cu Alloy. Materials and Manufacturing Processes, 31(12), 2015, 1573-1582.
  • 32. Pozdniakov A.V., Barkov R.Y., Amer S.M., Levchenko V.S., Kotov A.D. and Mikhaylovskaya A.V. Microstructure, mechanical properties and superplasticity of the Al-Cu-Y-Zr Alloy. Materials Science and Engineering A, 758, 2019, 28-35.
  • 33. Prasad N.E. and Wanhill R.J.H. Aerospace Materials and Material Technologies. Volume 2: Aerospace Material Technologies. Springer, 2017.
  • 34. Prasad N.E., Gokhale A.M. and Wanhill R.J.H. Aluminum-Lithium Alloys. Processing, Properties and Applications. Elsevier, 2014.
  • 35. Rajasekaran A., Sundar Singh Sivam S.P., Rajendrakumar S. and Saravanan K. Influence of setting variables in conventional super plastic forming process using grey relation analysis in taguchi method. ARPN Journal of Engineering and Applied Science, 12(15), 2017, 4648-4655.
  • 36. Ridley N. Metals for superplastic forming, in: G. Giuliano, (eds.) Superplastic forming of advanced metallic materials. Woodhead Publishing, 2011.
  • 37. Ridley N. Superplastic Forming and Diffusion Bonding of Titanium Alloys, in: R. Blockley, (eds.), Encyclopedia of Aerospace Engineering, John Willey & Sons, 2010.
  • 38. Sherby O.D. and Burke P.M. Mechanical behavior of crystalline solids at elevated temperature. Progress in Materials Science, 13, 1968, 323-390.
  • 39. Sherby O.D. and Wadsworth J. Superplasticity – Recent advances and future directions. Progress in Materials Science, 33(3), 1989, 169-221.
  • 40. Sieniawski J. and Motyka M. Superplasticity in titanium alloys. Journal of Achievements in Materials and Manufacturing Engineering, 24(1), 2007, 123-130.
  • 41. Tully K. and Monaghan J. Bulk forming of superplastic alloys. Journal of Materials Processing Tech-nology, 26(2), 1991, 159-171.
  • 42. Vasin R. A. and Filippov O.G. On Dependence of the Stress on Strain Rate of Superplastic Materials. Strength of Materials, 32(4), 2000, 311-315.
  • 43. Vasin R. A., Berdin V. K. and Kashaev R.M. On the Universal Curve in Superplasticity Mechanics. Strength of Materials, 33(6), 2001, 509-515.
  • 44. Wang J., Verma S., Alexander R. and Gau J.T. Springback control of sheet metal air bending process. Journal of Manufacturing Processes, 10, 2008, 21-27.
  • 45. Winowiecka J. The analysis of springback of titanium sheet after bending. Obróbka Plastyczna Metali, 24(3), 2013, 219-232.
  • 46. Wu L.H., Jia C.L., Han S.C., Li N., Ni D.R., Xiao B.L., Ma Z.Y., Fu M.J., Wang Y.Q. and Zeng Y.S. Superplastic deformation behavior of lamellar microstructure in a hydrogenated friction stir welded Ti-6Al-4V joint. Journal of Alloys and Compounds, 787, 2019, 1320-1326.
  • 47. Yu H., Yan M., Li J., Godbole A., Lu C., Tieu K., Li H. and Kong C. Mechanical properties and mi-crostructure of a Ti-6Al-4V alloy subjected to cold rolling, asymmetric rolling and asymmetric cry-orolling. Materials Science and Engineering: A, 710(5), 2018, 10-16.
  • 48. Zhao L., Yasmeen T., Gao P., Wei S., Bai Z., Jiang J. and Lin J. Mechanism-based constitutive equations for superplastic forming of TA15 with equiaxed fine grain structure. Procedia Engineering, 207, 2017, 1874-1879.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b300a9d-dc37-4527-a3fe-564413c32027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.