PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Displacements study of a dam using low-cost GNSS receivers, high precision leveling and Finite Element Model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Emerging low-cost Global Navigation Satellite System (GNSS) receivers are gaining prominence in geosciences and surveying engineering, finding application in diverse positioning research endeavors. The primary aim of this study was to assess the structural integrity using low-cost GNSS technology, whose usability has advanced significantly. The fundamental premise of the research is the assumption that the lifespan of the dam has reached its end in accordance with international regulations. Over a span of four years and across multiple campaigns, a combination of low-cost GNSS, high precision leveling data, and Finite Element Modeling techniques were employed to monitor deformations at the Sanalona dam. A notable deformation was identified at the central curtain of the dam. Utilizing low-cost GNSS equipment, horizontal deformations of up to 10 cm and vertical deformations of up to 30 cm were recorded. These values do not jeopardize the operational objectives of the dam as per the stipulations of the U.S. Army Corps of Engineers (USACE). The Sanalona Dam continues to operate effectively within the bounds of international regulations, even when subjected to extraordinary phenomena. The findings of this study hold relevance for the wider adoption of low-cost GNSS equipment in civil engineering structures and other demanding geodetic applications, including historic infrastructures. Moreover, the study underscores the viability of conducting precise dam surveys utilizing low-cost GNSS devices in campaign mode.
Słowa kluczowe
EN
PL
FEM   GNSS   monitorowanie   tama  
Rocznik
Strony
art. no. e55, 2024
Opis fizyczny
Bibliogr. 50 poz., fot., rys., tab., wykr.
Bibliografia
  • 1. Acosta-González, L.E., de Lacy-Pérez de los Cobos, M.C., Ramos, I. et al. (2018). Displacements Study of an Earth Fill Dam Based on High Precision Geodetic Monitoring and Numerical Modeling. Sensors, 18(1369). DOI: 10.3390/s18051369.
  • 2. Bayrak, T. (2008). Verifying pressure of water on dams, a case study. Sensors, 8(9), 5376–5385. DOI:10.3390/s8095376.
  • 3. Bojorquez-Pacheco, N., Romero-Andrade, R., Trejo-Soto, M.E. et al. (2023). Performance evaluation of single and double-frequency low-cost GNSS receivers in Static Relative mode. Geodetski Vestnik, 67(2), 244–257. DOI: 10.15292/geodetski-vestnik.2023.02.235-248.
  • 4. Brier, J., and Jayanti, L.D. (2020). Stress-Strain Modeling with GeoStudio. Vol. 21, Issue 1.
  • 5. Chen, C., Xiao, G., Chang, G. et al. (2021). Assessment of GPS/Galileo/BDS Precise Point Positioning with Ambiguity Resolution Using Products from Different Analysis Centers. Remote Sens., 13(16), 3266. DOI: 10.3390/rs13163266.
  • 6. Choy, S., Bisnath, S., and Rizos, C. (2017). Uncovering common misconceptions in GNSS Precise Point Positioning and its future prospect. GPS Solut., 21(1), 13–22. DOI: 10.1007/s10291-016-0545-x.
  • 7. Cina, A., and Piras, M. (2015). Performance of low-cost GNSS receiver for landslides monitoring: test and results. Geomat. Nat. Hazards Risk, 6(5–7), 497–514. DOI: 10.1080/19475705.2014.889046.
  • 8. Colombo, O.L. (1986). Ephemeris errors of GPS satellites. Bulletin Géodésique, 20706, 64–84.
  • 9. CONAGUA. (2022). Memoria descriptiva de la Presa Sanalona.
  • 10. Ehiorobo, J.O., and Irughe-Ehigiator, R. (2015). Monitoring for Horizontal Movement in an Earth Dam Using Differential GPS Monitoring for Horizontal Movement in an Earth Dam Using Siberian State Academy of Geodesy, Novosibirsk , Russia. J. Emerg. Trends in Eng. Appl. Sci., 2, 908–913.
  • 11. Engomoen, B., Witter, D., Knight, K. et al. (2014). Chapter 9: static deformation analysis phase 4. In Design Standars No. 13: Embankment Dams (Reclamatio, p. 126). US Department of Interior: Bureau of Reclamation.
  • 12. Garrido-Carretero, M.S., de Lacy-Pérez de los Cobos, M.C., Borque-Arancón, M.J. (2019). Low-cost GNSS receiver in RTK positioning under the standard ISO-17123-8: A feasible option in geomatics. Measurement: J. Int. Measurement Confederation, 137, 168–178. DOI: 10.1016/j.measurement.2019.01.045.
  • 13. Gikas, V., and Sakellariou, M. (2008). Settlement analysis of the Mornos earth dam (Greece): Evidence from numerical modeling and geodetic monitoring. Eng. Struct., 30(11), 3074–3081. DOI:10.1016/j.engstruct.2008.03.019.
  • 14. Gu, C., Wang, Y., Gu, H. et al. (2022). A Combined Safety Monitoring Model for High Concrete Dams. App. Sci., 12(12103), 1–17. DOI: 10.3390/app122312103.
  • 15. Guler, G., Kilic, H., Hosbas, G. et al. (2006). Evaluation of the movements of the dam embankments by means of geodetic and geotechnical methods. J. Surv. Eng., 132(1), 31–39. DOI: 10.1061/(ASCE)0733-9453(2006)132:1(31).
  • 16. Hamza, V., Stopar, B., and Ambrožic, T. (2020). Testing Multi-Frequency Low-Cost GNSS Receivers for Geodetic Monitoring Purposes. Sensors, 20, 16. DOI: 10.3390/s20164375.
  • 17. Hamza, V., Stopar, B., and Sterle, O. (2021). Testing the performance of multi-frequency low-cost gnss receivers and antennas. Sensors, 21(6), 1–16. DOI: 10.3390/s21062029.
  • 18. Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E. (2008). GNSS Global Navigation Satellite System GPS, GLONASS, Galileo and more. Springer Wien: New York.
  • 19. Hohensinn, R., Stauffer, R., Glaner, M.F. et al. (2022). Low-Cost GNSS and Real-Time PPP: Assessing the Precision of the u-blox ZED-F9P for Kinematic Monitoring Applications. Remote Sens., 14(20), 1–25. DOI: 10.3390/rs14205100.
  • 20. Janos, D., and Kuras, P. (2021). Evaluation of Low-Cost GNSS Receiver under Demanding Conditions in RTK Network Mode. Sensors, 21. DOI: 10.3390/s21165552.
  • 21. Kalkan, Y. (2014). Geodetic deformation monitoring of Ataturk Dam in Turkey. Arab. J. Geosci., 7(1), 397–405. DOI: 10.1007/s12517-012-0765-5.
  • 22. Kaloop, M.R., Yigit, C.O., Dindar, A.A. et al. (2020). Evaluation of the high-rate GNSS-PPP method for vertical structural motion. Surv. Rev., 52(371), 159–171. DOI: 10.1080/00396265.2018.1534362.
  • 23. Kouba, J. (2015). A Guide to using international GNSS Service (IGS) Products. International GNSS Service.
  • 24. Luzum, B., and Petit, G. (2010). IERS Technical Note, No. 36.
  • 25. Manzini, N., Orcesi, A., Thom, C. (2022). Performance analysis of low-cost GNSS stations for structural health monitoring of civil engineering structures. Struct. Infrastruct. Eng., 18(5), 595–611. DOI:10.1080/15732479.2020.1849320.
  • 26. Martín, A., Anquela, A.B., Dimas-Pagés, A. et al. (2015). Validation of performance of real-time kinematic PPP. A possible tool for deformation monitoring. Measurement: J. Int. Measurement Confederation, 69, 95–108. DOI: 10.1016/j.measurement.2015.03.026.
  • 27. Pan, Z., Chai, H., and Kong, Y. (2017). Integrating multi-GNSS to improve the performance of precise point positioning. Adv. Space Res., 60(12), 2596–2606. DOI: 10.1016/j.asr.2017.01.014.
  • 28. Poluzzi, L., Tavasci, L., Corsini, F. et al. (2019). Low-cost GNSS sensors for monitoring applications. Appl. Geomat.. DOI: 10.1007/s12518-019-00268-5.
  • 29. Romero-Andrade, R., Zamora-Maciel, A., Uriarte-Adrián, J.D J. et al. (2019). Comparative analysis of precise point positioning processing technique with GPS low-cost in different technologies with academic software. Measurement: J. Int. Measurement Confederation, 136. DOI:10.1016/j.measurement.2018.12.100.
  • 30. Romero-Andrade, R., Trejo-Soto, M.E., Vázquez-Ontiveros, J.R. (2021a). Sampling rate impact on Precise Point Positioning with a Low-Cost GNSS receiver. Appl. Sci., 11, 17. DOI: 10.3390/app11167669.
  • 31. Romero-Andrade, R., Trejo-soto, M.E., Vega-ayala, A. et al. (2021b). Positioning Evaluation of Single and Dual-Frequency Low-Cost GNSS Receivers Signals Using PPP and Static Relative Methods in Urban Areas. Appl. Sci., 1–17. DOI: 10.3390/app112210642.
  • 32. Saastamoinen, J. (1973). Contributions to the theory of atmospheric refraction. Bulletin Géodésique (1946-1975), 107(1), 13–34.
  • 33. Sioulis, A., Tsakiri, M., and Stathas, D. (2015). Evaluation of low cost, high sensitivity GNSS receivers based on the ISO RTK standards. Int. J. Geomat. Geosci., 6(2), 1597–1606.
  • 34. Structural Deformation Surveying (EM 1110-2-1009) (2018).
  • 35. Szostak-Chrzanowski, A. (2006). Interdisciplinary approach to deformation analysis in engineering, mining, and geosciences projects by combining monitoring surveys with deterministic modeling. Part II. Tech. Sci., 9, 147–172.
  • 36. Takasu, T. (2013). RTKLIB 2.4.2 Manual (Issue C).
  • 37. Tétreault, P., Kouba, J., Héroux, P. et al. (2005). CSRS-PPP: An internet service for GPS user access to the Canadian Spatial Reference frame. Geomatica, 59(1), 17–28.
  • 38. Teunissen, P.J.G. (2020). GNSS Precise Point Positioning. In Position, Navigation, and Timing Technologies in the 21st Century (pp. 503–528). John Wiley & Sons, Ltd. DOI: 10.1002/9781119458449.ch20.
  • 39. Tsakiri, M., Sioulis, A., and Piniotis, G. (2017). Compliance of low-cost, single-frequency GNSS receivers to standards consistent with ISO for control surveying. Int. J. Metrol. Quality Eng., 8. DOI:10.1051/ijmqe/2017006.
  • 40. Tsakiri, M., Sioulis, A., and Piniotis, G. (2018). The use of low-cost, single-frequency GNSS receivers in mapping surveys. Sur. Rev., 50(358), 46–56. DOI: 10.1080/00396265.2016.1222344.
  • 41. Tunini, L., Zuliani, D., and Magrin, A. (2022). Applicability of Cost-Effective GNSS sensor for crustal deformation studies. Sensors, 22, 350. https://pubmed.ncbi.nlm.nih.gov/35009892/.
  • 42. Ublox. (2022). u-center 22.07, p. 1-15.
  • 43. Vázquez-Ontiveros, J.R., Martinez-Felix, C.A., Vazquez-Becerra, G.E. (2022). Monitoring of local deformations and reservoir water level for a gravity type dam based on GPS observations. Adv. Space Res., 69, 319–330. DOI: 10.1016/j.asr.2021.09.018.
  • 44. Vázquez-Ontiveros, J.R., Ruiz-Armenteros, A.M., de Lacy-Pérez de los Cobos, M.C. et al. (2023). Risk Evaluation of the Sanalona Earthfill Dam Located in Mexico Using Satellite Geodesy Monitoring and Numerical Modeling. Remote Sens., 15(819), 1–22. DOI: 10.3390/rs15030819.
  • 45. Wielgocka, N., Hadas, T., Kaczmarek, A. et al. (2021). Feasibility of using low-cost dual-frequency gnss receivers for land surveying. Sensors, 21(6), 1–14. DOI: 10.3390/s21061956.
  • 46. Wu, J.T., Wu, S.C., Hajj, G.A. et al. (1992). Effects of antenna orientation on GPS carrier phase. Geod, 18(2).
  • 47. Xue, C., Psimoulis, P., Horsfall, A. et al. (2022). Assessment of the accuracy of low-cost multi-GNSS receivers in monitoring dynamic response of structures. Appl. Geomat. DOI: 10.1007/s12518-022-00482-8.
  • 48. Yigit, C.O., Alcay, S., and Ceylan, A. (2016). Displacement response of a concrete arch dam to seasonal temperature fluctuations and reservoir level rise during the first filling period: evidence from geodeticdata. Geomat. Nat. Hazards Risk, 7(4), 1489–1505. DOI: 10.1080/19475705.2015.1047902.
  • 49. Zamora-Maciel, A., Romero-Andrade, R., Moraila-Valenzuela, C.R. et al. (2020). Evaluación de receptores GPS de bajo costo de alta sensibilidad para trabajos geodésicos . Caso de estudio : línea base geodésica. Ciencia Ergo-Sum, 27, 10–17. DOI: 10.30878/ces.v27n1a5.
  • 50. Zhao, L., Yang, Y., Xiang, Z. et al. (2022). A Novel Low-Cost GNSS Solution for the Real-Time Deformation Monitoring of Cable Saddle Pushing : A Case Study of Guojiatuo Suspension Bridge. Remote Sens., 14(5174). DOI: 10.3390/rs14205174.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b2ef9ed-1cfb-4b63-acf1-42b2ba1d5465
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.