Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The prediction of strength properties is a topic of interest in many engineering fields. The common tests used to evaluate rock strength include the uniaxial compressive strength test ( UCS), Brazilian tensile strength ( BTS) and flexural strength ( FS). These tests can only be carried out in the laboratory and involve some difficulties such as preparation of the samples according to standards, amount of samples, and the long duration of test phases. This article aims to suggest equations for the prediction of mechanical properties of aggregates as a function of the P-wave velocity ( Vp) and Schmidt hammer hardness ( SHH) value of intact or in-situ rocks using regression analyses. Within the scope of the study, 90 samples were collected in the south of Türkiye. The mechanical properties, such as uniaxial compressive strength, Brazilian tensile strength and flexural strength of specimens, were determined in the laboratory and investigated in relation to P-wave velocity, and Schmidt hardness. Using regression techniques, various models were developed, and comparisons were made to find the optimum models using a coefficient of determination (R2) and p value (sig) performance indexes. Simple and multiple regression analysis found powerful correlations between mechanical properties and P-wave velocity and Schmidt hammer hardness. In addition, the prediction equations were compared with previous studies. The results obtained from this study indicate that the results of simple test methods, such as Vp or SHH values, of rock used for aggregate could be used to predict some mechanical properties. Thus, it will be possible to obtain information about the mechanical properties of aggregates in the study area in a faster and more practical way by using predictive models.
Wydawca
Czasopismo
Rocznik
Tom
Strony
393--407
Opis fizyczny
Bibliogr. 47 poz., fot., rys., tab., wykr.
Twórcy
autor
- Çukurova University, Turkey
Bibliografia
- [1] I. Korobiichuk, V. Korobiichuk, P. Hajek, P. Kokes, A. Juś, R. Szewczyk, Investigation of leznikovskiy granite by ultrasonic methods. Arch. Min. Sci. 63 (1), 75-82 (2018). DOI: https://doi.org/10.24425/118886.
- [2] L. Dong, X. Tong, J. Ma, Quantitative investigation of tomographic effects in abnormal regions of complex structures. Engineering 7 (7), 1011-1022 (2021). DOI: https://doi.org/10.1016/j.eng.2020.06.021
- [3] Y.B. Zhang, X.L. Yao, P. Liang, K.X. Wang, L. Sun, B.Z. Tian, S.Y. Wang, Fracture evolution and localization effect of damage in rock based on wave velocity imaging technology. J. Cent. South Univ. 28 (9), 2752-2769 (2021). DOI: https://doi.org/10.1007/s11771-021-4806-7.
- [4] A. Kos, J. Kortnik, Ultrasonic quality inspection of dimension stone blocks compactness. Arch. Min. Sci. 64 (2), 415-428 (2019). DOI: https://doi.org/10.24425/ams.2019.128692.
- [5] A. Azimian, R. Ajalloeian, L. Fatehi, An Empirical Correlation of Uniaxial Compressive Strength with P-Wave Velocity and Point Load Strength Index on Marly Rocks Using Statistical Method. Geotech. Geol. Eng. 32 (1), 205-214 (2014). DOI: https://doi.org/10.1007/s10706-013-9703-x.
- [6] K. Diamantis, E. Gartzos, G. Migiros, Study on Uniaxial Compressive Strength, Point Load Strength Index, Dynamic and Physical Properties of Serpentinites from Central Greece: Test Results and Empirical Relations. Eng. Geol. 108, 199-207 (2009). DOI: https://doi.org/10.1016/j.enggeo.2009.07.002.
- [7] M.T. Fener, The Effect of Rock Sample Dimension on the P-Wave Velocity. Non. Destruct. Eval. 30, 99-105 (2011). DOI: https://doi.org/10.1007/s10921-011-0095-7.
- [8] P. Gaviglio, Longitudinal Wave Propagation in a Limestone: The Relationship between Velocity and Density. Rock Mech. Rock Eng. 22, 299-306 (1989). DOI: https://doi.org/10.1007/BF01262285.
- [9] S. Kahraman, T. Yeken, Determination of Physical Properties of Carbonate Rocks from P-Wave Velocity. Bull. Eng. Geol. Environ. 67, 277-281 (2008). DOI: https://doi.org/10.1007/s10064-008-0139-0.
- [10] M. Khandelwal, P.G. Ranjith, Correlating Index Properties of Rocks with P-Wave Measurements. J. Appl. Geophys. 71, 1-5 (2010). DOI: https://doi.org/10.1016/j.jappgeo.2010.01.007.
- [11] M. Khandelwal, T.N. Singh, Correlating Static Properties of Coal Measures Rocks with P-Wave Velocity. Int. J. Coal Geol. 79, 55-60 (2009). DOI: https://doi.org/10.1016/j.coal.2009.01.004.
- [12] R.D. Lama, V.S. Vutukuri, S.S. Saluja, Handbook on Mechanical Properties of Rocks, 2nd edn. Trans. Tech. Publications, Germany (1978).
- [13] J. Martínez-Martínez, D. Benavente, M.A. García-del-Cura, Comparison of the Static and Dynamic Elastic Modulus in Carbonate Rocks. Bull. Eng. Geol. Environ. 71, 263-268 (2012). DOI: https://doi.org/10.1007/s10064-011-0399-y.
- [14] B. Minaeian, K. Ahangari, Estimation of Uniaxial Compressive Strength Based on P-Wave and Schmidt Hammer Rebound Using Statistical Method. Arab. J. Geocsi. 6, 1925-1931 (2011). DOI: https://doi.org/10.1007/s12517-011-0460-y.
- [15] Z.A. Moradian, M. Behnia, Predicting the Uniaxial Compressive Strength and Static Young’s Modulus of Intact Sedimentary Rocks Using the Ultrasonic Test. Int. J. Geomech. 9, 1-14 (2009). DOI: https://doi.org/10.1061/(ASCE)1532-3641(2009)9:1(14).
- [16] K. Sarkar, V. Vishal, T.N. Singh, An Empirical Correlation of Index Geomechanical Parameters with the Compressional Wave Velocity. Geotech. Geol. Eng. 30 (2), 469-479 (2012). DOI: https://doi.org/10.1007/s10706-011-9481-2.
- [17] S. Yagiz, P-wave Velocity Test for Assessment of Geotechnical Properties of Some Rock Materials. Bull. Mater. Sci. 34 (4), 947-953 (2011). DOI: https://doi.org/10.1007/s12034-011-0220-3.
- [18] I. Yilmaz, A. G. Yuksek, An Example of Artificial Neural Network Application for Indirect Estimation of Rock Parameters. Int. J. Rock. Mech. Min. Sci. 5 (41), 781-795 (2008). DOI: https://doi.org/10.1007/s00603-007-0138-7.
- [19] A.M. Kilic, E. Kahraman, O. Kilic, The Use Of Ultrasonic Mesaurements Determining the Quality of The Dimension Stone Blocks. Int. J. Nat. Eng. Sci. 11, 28-33 (2017).
- [20] J.S. Cargill, A. Shakoor, Evaluation of Empirical Methods for Measuring the Uniaxial Compressive Strength. Int. J. Rock Mech. Min. Sci. 27, 495-503 (1990).
- [21] V.A. Hucka, Rapid Method for Determining the Strength of Rocks in Situ. Int. J. Rock. Mech. Min. Sci. 2, 127-134 (1965).
- [22] D.C. Entwisle, P.R.N. Hobbs, L.D. Jones, D. Gunn, M.G. Raines, The Relationships between Effective Porosity, Uniaxial Compressive Strength and Sonic Velocity of Intact Borrowdale Volcanic Group Core Samples from Sellafield. Geotech. Geol. Eng. 23, 793-809 (2005). DOI: https://doi.org/10.1007/s10706-004-2143-x.
- [23] R. Abdelaali, B. Abderrahim, B. Mohamed, G. Yves, S. Abderrahim, H. Mimoun, S. Jamal, Prediction of Porosity and Density of Calcarenite Rocks from P-Wave Velocity Measurements. Int. J. Geol. 4, 1292-1299 (2013). DOI: https://doi.org/10.4236/ijg.2013.49124.
- [24] A. Tugrul, I.H. Zarif, Correlation of Mineralogical and Textural Characteristics with Engineering Properties of Selected Granitic Rocks from Turkey. Eng. Geol. 51, 303-317 (1999). DOI: https://doi.org/10.1016/S0013-7952(98)00071-4.
- [25] R. Altindag, Correlation between P-Wave Velocity and Some Mechanical Properties for Sedimentary Rocks. J. South. Afr. Inst. Min. Metall. 112 (3), 229-237 (2012).
- [26] E. Yasar, Y. Erdogan, Correlating Sound Velocity with the Density, Compressive Strength and Young’s Modulus of Carbonate Rocks. Int. J. Rock Mech. Min. 41 (5), 871-875, (2004). DOI: https://doi.org/10.1016/S0013-7952(98)00071-4.
- [27] S. Kahraman, Evaluation of Simple Methods for Assessing the Uniaxial Compressive Strength of Rock. Int. J. Rock Mech. Min Sci. 38, 981-994 (2011). DOI: https://doi.org/10.1016/S1365-1609(01)00039-9.
- [28] M. Fener, S. Kahraman, A. Bilgil, O. Gunaydin, A Comparative Evaluation of Indirect Methods to Estimate the Compressive Strength of Rocks. Rock. Mech. Rock. Eng. 38 (4), 329-343 (2005). DOI: https://doi.org/10.1007/s00603-005-0061-8.
- [29] P.K. Sharma, T.N. Singh, A Correlation between P-Wave Velocity, Impact Strength Index, Slake Durability Index and Uniaxial Compressive Strength. Bull. Eng. Geol. Environ. 67, 17-22 (2008). DOI: https://doi.org/10.1007/s10064-007-0109-y.
- [30] A. Azimian, R. Ajalloeian, Empirical Correlation of Physical and Mechanical Properties of Marly Rocks with P Wave Velocity. Arab. J. Geosci. 8 (4), 2069-2079 (2015). DOI: https://doi.org/10.1007/s12517-013-1235-4.
- [31] A. Teymen, Prediction of Basic Mechanical Properties of Tuffs Using Physical and Index Tests. J. Min. Sci. 54(5), 721-733 (2018). DOI: https://doi.org/10.1134/S1062739118054820.
- [32] R. Kallu, P. Roghanchi, Correlations between Direct and Indirect Strength Test Methods. Int. J. Min. Sci. Technol. 25 (3), 355-360 (2015). DOI: https://doi.org/10.1016/j.ijmst.2015.03.005.
- [33] K. Karaman, A. Kesimal, A Comparative Study of Schmidt Hammer Test Methods for Estimating the Uniaxial Compressive Strength of Rocks. Bull. Eng. Geol. Environ. 74, 507-520 (2014). DOI: https://doi.org/10.1007/s10064-014-0617-5.
- [34] A. Kilic, A. Teymen, Determination of Mechanical Properties of Rocks Using Simple Methods. Bull. Eng. Geol. Environ. 67 (2), 237-244 (2008). DOI: https://doi.org/10.1007/s10064-008-0128-3.
- [35] D.A. Mohammed, Y.M. Alshkane, Y.A. Hamaamin, A.O. Mahmood, Tensile Strength of Different Types of Limestone Rocks in North of Iraq. Innov. Infrastruct. Solut. 7 (1), 1-16 (2022). DOI: https://doi.org/10.1007/s41062-021-00620-y.
- [36] A. Azimian, Application of Statistical Methods for Predicting Uniaxial Compressive Strength of Limestone Rocks Using Nondestructive Tests. Acta Geotech. 12 (2), 321-333 (2017). DOI: https://doi.org/10.1007/s11440-016-0467-3.
- [37] M. Khandelwal, Correlating P-Wave Velocity with the Physico-Mechanical Properties of Different Rocks. Pure Appl. Geophys. 170 (4), 507-514 (2013). DOI: https://doi.org/10.1007/s00024-012-0556-7.
- [38] M. Parsajoo, D.J. Armaghani, A.S. Mohammed, M. Khari, S. Jahandari, Tensile Strength Prediction of Rock Material Using Non-Destructive Tests: A Comparative Intelligent Study. Transp. Geotech. 31, 100652 (2021). DOI: https://doi.org/10.1016/j.trgeo.2021.100652.
- [39] A. Karakuş, M. Akatay, Determination of Basic Physical and Mechanical Properties of Basaltic Rocks from P-Wave Velocity, Nondestruct. Test Eval. 28, 342-353 (2013). DOI: https://doi.org/10.1080/10589759.2013.823606.
- [40] M. Francisco, V. Graça, M. Tiago, The Performance of Ultrasonic Pulse Velocity on the Prediction of Tensile Granite Behaviour: A Study Based on Artificial Neural Networks, In: 9th International masonry conference in Guimarães, Portugal, (2014).
- [41] P. Murthi, K. Poongodi, R. Gobinath, Correlation between Rebound Hammer Number and Mechanical Properties of Steel Fibre Reinforced Pavement Quality Concrete. Mater. Today: Proc. 39, 142-147 (2021). DOI: https://doi.org/10.1016/j.matpr.2020.06.402.
- [42] S. Noor-E-Khuda, F. Albermani, M. Veidt, Flexural Strength of Weathered Granites: Influence of Freeze and Thaw Cycles. Constr. Build. Mater. 156, 891-901 (2017). DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.049.
- [43] ASTM, D 2938-95: Standard Test Methods for Unconfined Compressive Strength of Intact Rock Core Specimens. ASTM, Race Street, Philedelphia PA 19103-1187, USA (2004).
- [44] ASTM D3967-16: Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens, ASTM, Race Street, Philedelphia, USA, (2016).
- [45] ASTM C 880-89: Standard test method for flexural strength of dimensional stone. Annual book of ASTM Standards, ASTM 1916, Race Street, Philedelphia PA 19103-1187 USA, 04.08, (1993).
- [46] ISRM (International Society for Rock Mechanics) 1981b: Suggested Methods for Determining Hardness and Abrasiveness of Rocks, Part 3. Commission on Standardisation of Laboratory and Field Tests, 101-102, (1981).
- [47] ISRM (International Society for Rock Mechanics) 1978: Suggested methods for determining sound velocity. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15, 53-58, (1978).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b2e81d3-bd79-4774-99ea-b6f533a113d7