PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the differential transform method to the free vibration analysis of functionally graded timoshenko beams

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, free vibration characteristics of a functionally graded Timoshenko beam that undergoes flapwise bending vibration is analysed. The energy expressions are derived by introducing several explanotary figures and tables. Applying Hamilton’s principle to the energy expressions, governing differential equations of motion and boundary conditions are obtained. In the solution part, the equations of motion, including the parameters for rotary inertia, shear deformation, power law index parameter and slenderness ratio are solved using an efficient mathematical technique, called the differential transform method (DTM). Natural frequencies are calculated and effects of several parameters are investigated.
Rocznik
Strony
1205--1217
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Istanbul Technical University, Faculty of Aeronautics and Astronautics, Maslak, Istanbul, Turkey
Bibliografia
  • 1. Alshorbagy A.E., Eltaher M.A., Mahmoud F.F., 2011, Free vibration characteristics of a functionally graded beam by finite element method, Applied Mathematical Modelling, 35, 412-425
  • 2. Bhimaraddi A., Chandrashekhara K., 1991, Some observation on the modeling of laminated composite beams with general lay-ups, Composite Structures, 19, 371-380
  • 3. Chakraborty A., Gopalakrishnan S., Reddy J.N., 2003, A new beam finite element for the analysis of functionally graded materials, International Journal of Mechanical Sciences, 45, 519-539
  • 4. Dadfarnia M., 1997, Nonlinear forced vibration of laminated beam with arbitrary lamination, M.Sc. Thesis, Sharif University of Technology
  • 5. Deng H.D., Wei C., 2016, Dynamic characteristics analysis of bi-directional functionally graded Timoshenko beams, Composite Structures, in press
  • 6. Eringen A.C., 1980, Mechanics of Continua, Robert E. Krieger Publishing Company, Huntington, New York
  • 7. Giunta G., Crisafulli D., Belouettar S., Carrera E., 2011, Hierarchical theories for the free vibration analysis of functionally graded beams, Composite Structures, 94, 68-74
  • 8. Hodges D.H., Dowell E.H., 1974, Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades, NASA Technical Report, NASA TN D-7818
  • 9. Huang Y., Li X.F., 2010, A new approach for free vibration of axially functionally graded beams with non-uniform cross-section, Journal of Sound and Vibration, 329, 2291-2303
  • 10. Kapuria S., Bhattacharyya M., Kumar A.N., 2008, Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation, Composite Structures, 82, 390-402
  • 11. Kaya M.O., Ozdemir Ozgumus O., 2007, Flexural-torsional-coupled vibration analysis of axially loaded closed-section composite Timoshenko beam by using DTM, Journal of Sound and Vibration, 306, 495-506
  • 12. Kaya M.O., Ozdemir Ozgumus O., 2010, Energy expressions and free vibration analysis of a rotating uniform timoshenko beam featuring bending-torsion coupling, Journal of Vibration and Control, 16, 6, 915-934
  • 13. Kollar L.R., Springer G.S., 2003, Mechanics of Composite Structures, Cambridge University Press, United Kingdom
  • 14. Lai S.K., Harrington J., Xiang Y., Chow K.W., 2012, Accurate analytical perturbation approach for large amplitude vibration of functionally graded beams, International Journal of Non-Linear Mechanics, 47, 473-480
  • 15. Li X.F., 2008, A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams, Journal of Sound and Vibration, 318, 1210-1229
  • 16. Li X.F., Kang Y.A., Wu J.X., 2013, Exact frequency equation of free vibration of exponentially funtionally graded beams, Applied Acoustics, 74, 3, 413-420
  • 17. Loja M.A.R., Barbosa J.I., Mota Soares C.M., 2012, A study on the modelling of sandwich functionally graded particulate composite, Composite Structures, 94, 2209-2217
  • 18. Loy C.T., Lam K.Y., Reddy J.N., 1999, Vibration of functionally graded cylinderical shells, International Journal of Mechanical Science, 41, 309-324
  • 19. Lu C.F., Chen W.Q., 2005, Free vibration of orthotropic functionally graded beams with various end conditions, Structural Engineering and Mechanics, 20, 465-476
  • 20. Ozdemir Ozgumus O., Kaya M.O., 2013, Energy expressions and free vibration analysis of a rotating Timoshenko beam featuring bending-bending-torsion coupling, Archive of Applied Mechanics, 83, 97-108
  • 21. Sina S.A., Navazi H.M., Haddadpour H., 2009, An analytical method for free vibration analysis of functionally graded beams, Materials and Design, 30, 741-747
  • 22. S¸imsek M., 2010, Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories, Nuclear Engineering and Design, 240, 697-705
  • 23. Tang A.Y., Wu J.X., Li X.F., Lee K.Y., 2014, Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams, International Journal of Mechanical Sciences, 89, 1-11
  • 24. Thai H.T., Vo T.P., 2012, Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories, International Journal of Mechanical Sciences, 62, 57-66
  • 25. Wang Z., Wang X., Xu G., Cheng S., Zeng T., 2016, Free vibration of two directional functionally graded beams, Composite Structures, 135, 191-198
  • 26. Wattanasakulpong N., Prusty B.G., Kelly D.W., Hoffman M., 2012, Free vibration analysis of layered functionally graded beams with experimental validation, Materials and Design, 36, 182-190
  • 27. Zhong Z., Yu T., 2007, Analytical solution of a cantilever functionally graded beam, Composites Science and Technology, 67, 481-488
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b2cdd04-b884-45fe-ada5-85a1e60cf4d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.