PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation of a centrifugal pump hydraulic performance in hydraulic transmission of solids

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In petroleum and mine industries, the centrifugal pumps were used for transferring solid particles with water. This method is preferable to other methods because of its user friendly and economic issues. In this article by selecting a proper pump and designing test circuit,we conducted hydraulic tests for water and water mixture with solid particles. For this purpose, an experimental set-up of centrifugal pump with only water and water with solid particles was developed. Then by analyzing the test results and efficiency equation, optimal coefficients of head loss is provided to improve the pump efficiency during hydraulic transmission of solids. The experimental results of power consumption, head, and pressure difference measurements in solid-liquid systems are presented. The experimental set-up results are compared with simulation and numerical one, which show a good agreement with them. It reveals that by adding the solid particles and increasing the fluid density up to 15%, the consumed power increases by about 20%, which result in dropping the efficiency of hydraulic system up to 6%. Finally, the optimal components for developed cycle presented for evaluation the various configuration and hydraulic analysis of pure flow and flow with solid particles in various applications to enhance the most achievable efficiency.
Rocznik
Strony
259--270
Opis fizyczny
Bibliogr. 31 poz., il. kolor., fot., 1 rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran
autor
  • Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran
Bibliografia
  • [1] Di Maio F., Hu J., Tse P., Pecht M., Tsui K., Zio E. Ensembleapproaches for clustering health status of oil sand pumps, Expert Systems with Applications, 39(5), 2012, 4847-4859.
  • [2] Vaezi M., Kumar A. The flow of wheat straw suspensions in an open-impeller centrifugal pump, Biomass and Bioenergy, 69, 2014, 106-123.
  • [3] Walker C.I., Robbie P. Comparison of some laboratory wear tests and field wear in slurry pumps, Wear, 302(1-2), 2013, 1026- 1034.
  • [4] Trinh T., Jensen P., Dam-Johansen K., Knudsen N., Sørensen H., Szabo P. Properties of slurries made of fast pyrolysis oil and char or beech wood, 61, 2014, 227-235.
  • [5] Jurkowska M., Szczygie I. Review on properties of microencapsulated phase changematerials slurries (mPCMS), Applied Thermal Engineering, 98, 2016, 365-373.
  • [6] Wei L., Shi W., Jiang X., Chen B., Wu Y. Analysis on Internal Solidliquid Two-phase Flowin the Impellers of Sewage Pump, Procedia Engineering, 31, 2012, 170-175.
  • [7] Shi B., Wei J., Zhang Y. Phase discrimination and a high accuracy algorithm for PIV image processing of particle-fluid two-phase flow inside high-speed rotating centrifugal slurry pump, Flow Measurement and Instrumentation, 45, 2015, 93-104.
  • [8] Mahmud M., Faraj Y., Mi W. Visualisation and Metering of Two Phase Counter-gravity Slurry Flow using ERT, Procedia Engineering, 102, 2015, 930-935.
  • [9] Aslam Noon A., Kim M., Erosion wear on centrifugal pump casing due to slurry flow, Wear, 364-365, 2016, 103-111.
  • [10] Wang S., Xie X., Yi J. Experimental investigation of two-phase flow characteristics of LiBr/H2O solution through orifice plates in vacuum environment, 38, 2014, 267-274.
  • [11] Kollár E., Mishra R., Asim T. Particle Size Effects on Optimal Sizing and Lifetime of Pipelines Transporting Multi-sized Solid-Liquid Mixtures, International Journal of Refrigeration, 11, 2013, 317- 322.
  • [12] Riofrío M., Caney N., Gruss J. State of the art of eflcient pumped two-phase flow cooling technologies, Applied Thermal Engineering, 104, 2016, 333-343.
  • [13] Hanafizadeh P., Eshraghi J., Amini A. Entropy analysis of buoyancy driven gas-liquid two-phase flow: Analytical and experimental approaches, European Journal of Mechanics - B/Fluids, 59, 2016, 169-176.
  • [14] Zhang J., Cai S., Li Y., Zhu H., Zhang Y. Visualization study of gas- liquid two-phase flow patterns inside a three-stage rotodynamic multiphase pump, Experimental Thermal and Fluid Science, 70, 2016, 125-138.
  • [15] Pineda H., Biazussi J., López F., Oliveira Bruno., Carvalho R.D.M., Bannwart C., Ratkovich N. Phase distribution analysis in an Electrical Submersible Pump (ESP) inlet handling water-air twophase flow using Computational Fluid Dynamics (CFD), Journal of Petroleum Science and Engineering, 139, 2016, 49-61.
  • [16] Liu L., Barigou M. Numerical modelling of velocity field and phase distribution in dense monodisperse solid-liquid suspensions under different regimes of agitation: CFD and PEPT experiments, Chemical Engineering Science, 101, 20 2013, 837-850.
  • [17] Silva R., Cotas C., Garcia F.A.P., Faia P.M., Rasteiro M.G. Particle Distribution Studies in Highly Concentrated Solid-liquid Flows in Pipe Using the Mixture Model, Procedia Engineering, 102, 2015, 1016-1025.
  • [18] Lotito V., Lotito A. Rheological measurements on different types of sewage sludge for pumping design, J Environ Manage, 137, 2014, 189-196.
  • [19] Wang Y., Liu H., Liu D., Yuan S.,Wang J., Jiang L. Application of the two-phase three-component computational model to predict cav itating flow in a centrifugal pump and its validation, Computers & Fluids, 131, 2016, 142-150.
  • [20] Wei H., Wei M., Li R., Li Q. The Numerical Analysis of Radial Thrust and Axial Thrust in the Screw Centrifugal Pump, Procedia Engineering, 31, 2012, 176-181.
  • [21] Nguyen DL. Sonic velocity in two-phase systems. Int JMultiphase Flow, 7, 1981 311-320.
  • [22] Hamkins C.P., Pumps as energy recovery turbineswith two-phase flow. ASME Pumping Machinery Symp, San Diego, 1989.
  • [23] Gandhi B.K., Singh S.N., Seshadri V. Performance characteristics of centrifugal slurry pumps. ASME J Fluids Engng, 123, 2001, 271- 280.
  • [24] Van Riet E.J., Theoretical Description and Numerical Sensitivity Analysis on Wilson Model for Hydraulic Transport of Solids in Pipelines., 2005
  • [25] Gneipel G. Berechnung der Partikelbahnen bei der Förderung von Fluid-Feststoffgemischen. Diss. B Bergakademie Freiberg, 1990.
  • [26] Taitel Y., Dukler A.E. A model for predicting flow regime transitions in horizontal and near-horizontal gas-liquid flow. AIChE J 22, 1976, 47-55.
  • [27] Sauer M., Einfluss der Zuströmung auf das Förderverhalten von Kreiselpumpen radialer Bauart bei Flüssigkeits-/Gasförderung. Diss. TU Kaiserslautern, 2002.
  • [28] Engin T., Gur M., Comparative evaluation of some existing correlations to predict head degradation of centrifugal slurry pumps, ASME J Fluids Engng, 123 (2003)149-157.
  • [29] Gülich J.F., Fundamentals of multiphase flow. Cambridge University Press, 2005.
  • [30] Kouidri S.,Mass flow rate measurement in heterogeneous diphasic flows by using the slurry pumps behavior, 13, 2002, 45-51.
  • [31] Wilson K.C., Addie G.R., Sellgren A., Clift R: Slurry transport using centrifugal pumps, 2nd ed. Blackie Academic and Professional, London, 1997.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b28d3b4-078c-40d4-9554-a2ce29df7edb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.