Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Electron Beam Therapy (EBT) with small field techniques is primarily used for treating superficial and small lesions. Due to the limited penetration depth of electron beams, they are well-suited for treating skin and shallow tissue tumors. Small fields for electron beams require modifying standard large electron cones with lead cut-outs to achieve appropriate small fields for superficial lesions. This study thoroughly investigates absolute dose changes, the impact of reduced field size, and changes in PDD, dmax, and isodose curve constriction when using shorter SSDs instead of the standard 100 cm SSD. Materials and Methods: Focusing on superficial lesions, we used a cone 10 × 10 cm2 with 6 MeV energy, reducing the field size to cone 6 × 6 cm2, cone 4 × 6 cm2, and cone 2 × 2 cm2 using lead cut-outs. We irradiated films and measured absolute dose with a PTW 34045 (Advanced Markus) parallel plate ionization chamber and a Farmer chamber at various SSDs (50 cm, 80 cm, 100 cm, 110 cm, and 120 cm). We compared the absolute output at different dmax points and determined changes in field size and isodose curve constriction/expansion to provide correction factors for absolute output dose for patient treatments at different SSDs. Results: For a 6 MeV electron cone at SSD 100 cm with a cone 10 × 10 cm2 field size, the maximum dose depth (dmax) on the percentage depth dose (PDD) curve is 1.43 cm. We calibrated the absolute dose at this point to 1 cGy/MU. When the field size was reduced from cone 10 × 10 cm2 to cone 2 × 2 cm2, the output dropped from 1 cGy/MU to 0.75 cGy/MU, and the dmax shifted from 1.43 cm to 1.1 cm. To achieve a higher dose rate, reducing the SSD from 100 cm to 50 cm increased the output from 1 cGy/MU to 2.56 cGy/MU. When reducing both the field size (cone 10 × 10 cm2 to cone 2 × 2 cm2) and the SSD (100 cm to 50 cm), the output increased from 1 cGy/MU to 1.92 cGy/MU. Additionally, at SSD 100 cm, reducing the field size from cone 10 × 10 cm2 to cone 2 × 2 cm2 caused the 90% isodose curve to constrict while the low-dose isodose curve expanded. These parameters are crucial for calculating the patient’s treatment monitor units. Conclusion: For treating superficial and small tumors with electron beams, the dose calculation capability of computerized treatment planning systems (TPS) is limited, especially when using large cone lead cut-outs and shorter SSDs than the standard 100 cm. Such specialized treatments require empirical measurements to determine the patient’s treatment monitor units. This study provides an accurate and effective solution for electron beam therapy with small fields and short SSDs.
Słowa kluczowe
Rocznik
Tom
Strony
81--91
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Heavy Ion Center of Wuwei Cancer Hospital; Gansu Wuwei Academy of Medical Sciences; Gansu Wuwei Tumor Hospital, Wuwei City, Gansu province, China
autor
- Heavy Ion Center of Wuwei Cancer Hospital; Gansu Wuwei Academy of Medical Sciences; Gansu Wuwei Tumor Hospital, Wuwei City, Gansu province, China
autor
- Heavy Ion Center of Wuwei Cancer Hospital; Gansu Wuwei Academy of Medical Sciences; Gansu Wuwei Tumor Hospital, Wuwei City, Gansu province, China
autor
- Heavy Ion Center of Wuwei Cancer Hospital; Gansu Wuwei Academy of Medical Sciences; Gansu Wuwei Tumor Hospital, Wuwei City, Gansu province, China
autor
- Heavy Ion Center of Wuwei Cancer Hospital; Gansu Wuwei Academy of Medical Sciences; Gansu Wuwei Tumor Hospital, Wuwei City, Gansu province, China
autor
- Heavy Ion Center of Wuwei Cancer Hospital; Gansu Wuwei Academy of Medical Sciences; Gansu Wuwei Tumor Hospital, Wuwei City, Gansu province, China
autor
- Heavy Ion Center of Wuwei Cancer Hospital; Gansu Wuwei Academy of Medical Sciences; Gansu Wuwei Tumor Hospital, Wuwei City, Gansu province, China
- Department of Medical Physics, Chengde Medical University, Chengde City, Hebei Province, China
- Department of Radiation Oncology, Yee Zen General Hospital, Tao Yuan City, Taiwan
Bibliografia
- 1. Bayatiani MR, Fallahi F, Aliasgharzadeh A, Ghorbani M, Khajetash B, Seif F. A comparison of symmetry and flatness measurements in small electron fields by different dosimeters in electron beam radiotherapy. Rep Pract Oncol Radiother. 2021;26(1):50-58. https://doi.org/10.5603/RPOR.a2021.0009
- 2. Sharma SC, Johnson MW, Gossman MS. Practical considerations for electron beam small field size dosimetry. Medical Dosimetry. 2005;30(2):104-106. https://doi.org/10.1016/j.meddos.2005.02.001
- 3. Ebert MA, Hoban PW. A model for electron‐beam applicator scatter. Medical Physics. 1995;22(9):1419-1429. https://doi.org/10.1118/1.597415
- 4. ICRU. Radiation dosimetry: electron beams with energies between 1 and 50 MeV. Bethesda, MD: International Commission on Radiation Units and Measurements, ICRU Report 35; 1984.
- 5. Yosefof E, Kurman N, Yaniv D. The Role of Radiation Therapy in the Treatment of Non-Melanoma Skin Cancer. Cancers. 2023;15(9):2408. https://doi.org/10.3390/cancers15092408
- 6. Fattahi S, Ahmed SK, Park SS, et al. Reirradiation for Locoregional Recurrent Breast Cancer. Advances in Radiation Oncology. 2021;6(1):100640. https://doi.org/10.1016/j.adro.2020.100640
- 7. Zablow AI, Eanelli TR, Sanfilippo LJ. Electron beam therapy for skin cancer of the head and neck. Head and Neck. 1992;14(3):188-195. https://doi.org/10.1002/hed.2880140305
- 8. Deiab NA, Abdel Kader SZ, Tolba AR, et al. Dosimetry for Small, Irregular and Rectangular Field Size for Electron Beam Therapy. Medical Journal of Cairo University. 2015;83(1):733-738.
- 9. Das IJ, McGee KP, Cheng C. Electron‐beam characteristics at extended treatment distances. Medical Physics. 1995;22(10):1667-1674. https://doi.org/10.1118/1.597431
- 10. Khan FM, Doppke KP, Hogstrom KR, et al. Clinical electron‐beam dosimetry: Report of AAPM Radiation Therapy Committee Task Group No. 25. Medical Physics. 1991;18(1):73-109. https://doi.org/10.1118/1.596695
- 11 Saw CB, Ayyangar KM, Pawlicki T, Korb LJ. Dose distribution considerations of medium energy electron beams at extended source-to-surface distance. International Journal of Radiation Oncology*Biology*Physics. 1995;32(1):159-164. https://doi.org/10.1016/0360-3016(94)00598-F
- 12. Nath R, Biggs PJ, Bova FJ, et al. AAPM code of practice for radiotherapy accelerators: Report of AAPM Radiation Therapy Task Group No. 45. Medical Physics. 1994;21(7):1093-1121. https://doi.org/10.1118/1.597398
- 13. Mahfirotin DA, Ferliano B, Handika AD, et al. A multicenter study of modified electron beam output calibration. J Applied Clin Med. Phys. 2023;25(1): e14232. https://doi.org/10.1002/acm2.14232
- 14. Zakaria A, Schuette W, Younan C. Reference Dosimetry according to the New German Protocol DIN 6800-2 and Comparison with IAEA TRS 398 and AAPM TG 51. Biomed Imaging Interv J. 2011;7:e15.
- 15. Jamshidi A, Kuchnir FT, Reft CS. Determination of the source position for the electron beams from a high‐energy linear accelerator. Medical Physics. 1986;13(6):942-948. https://doi.org/10.1118/1.595823
- 16. Khan FM, Sewchand W, Levitt SH. Effect of Air Space on Depth Dose in Electron Beam Therapy. Radiology. 1978;126(1):249-251. https://doi.org/10.1148/126.1.249
- 17. Roback DM, Khan FM, Gibbons JP, Sethi A. Effective SSD for electron beams as a function of energy and beam collimation. Medical Physics. 1995;22(12):2093-2095. https://doi.org/10.1118/1.597651
- 18. Saw CB, Pawlicki T, Korb LJ, Wu A. Effects of extended SSD on electron-beam depth-dose curves. Medical Dosimetry. 1994;19(2):77-81. https://doi.org/10.1016/0958-3947(94)90075-2
- 19. Gerbi BJ, Antolak JA, Deibel FC, et al. Recommendations for clinical electron beam dosimetry: Supplement to the recommendations of Task Group 25. Medical Physics. 2009;36(7):3239-3279. https://doi.org/10.1118/1.3125820
- 20. Sweeney LE, Gur D, Bukovitz AG. Scatter component and its effect on virtual source and electron beam quality. International Journal of Radiation Oncology*Biology*Physics. 1981;7(7):967-971. https://doi.org/10.1016/0360-3016(81)90018-3
- 21. Hogstrom KR, Kurup RG, Shiu AS, Starkschall G. A two-dimensional pencil-beam algorithm for calculation of arc electron dose distributions. Phys Med Biol. 1989;34(3):315-341. https://doi.org/10.1088/0031-9155/34/3/005
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b274d47-4324-48a6-97e0-2d34946cc071
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.