PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tendencies of Chinese subways’ spatial growth in 2000-2020

Autorzy
Treść / Zawartość
Warianty tytułu
PL
Tendencje rozwoju przestrzennego chińskiego metra w latach 2000-2020
Języki publikacji
EN
Abstrakty
EN
One of the main transportation problems of biggest modern cities is the excessively high load on ground transport, which is why the development of subway networks is of particular importance. This article analyzes the development of the spatial structure of subway networks in China. Currently China shows an intensive growth of existing networks and massive openings of new networks, which makes it the most suitable object for studying the evolution of subway networks. The methodology developed by K. Kansky and S. A. Tarkhov was used as the theoretical basis of this study. The study was conducted by analyzing the dynamics of the main quantitative and topomorphological indicators of subway networks during their passage through the stages of spatial evolution. The following indicators were used: the number of subways, the total length of the network, the number of cycles in the network, the number of topological layers and the number of cycles in each of them, the number of branching tiers, the area of topological layers and their share in the cyclic core of the network, the distribution of the length between the elements of the network structure, average cycle size, topological limit, cyclization index and circuity index. We identified the patterns for passing the stages of evolutionary development by the networks of Chinese subways; also, we found common features that define the “Chinese” type of subway, we identified a new subtype of networks.
Bibliografia
  • [1] Angeloudis P, Fisk.D, 2006, Large subway systems as complex networks // Physica A, Vol. 367. № 3, 553–558.
  • [2] Derrible S., Kennedy C., 2009, A network analysis of subway systems in the world using updated graph theory //Transportation Res. Rec., V. 2112. № 1, 17–25.
  • [3] Gattuso D., Miriello E., 2005, Compared Analysis of Metro Networks Supported by Graph Theory // Networks and Spatial Economics, V. 5. № 4, 395–414.
  • [4] Guo J., Sun M., Wang T, Lu L., 2015, Transportation Development and Congestion Mitigation. Measures of Beijing, China. Mitigation and Adaptation Strategies for Global Change, 20, 651–63.
  • [5] Haggett P., Chorley R.J., 1969, Network Analysis in Geography. London: Edward Arnold,. 348 p.
  • [6] Hong C., Xu T., Zhu J., 2017, A comparative study of the topological structure of Nanjing metro network based on whole perspective // Ind. Eng J., Vol. 20. № 5, 51-57.
  • [7] Hyun K., Song Y., 2015, Examining Accessibility and Reliability in the Evolution of Subway Systems // Journal of Public Transportation, Vol. 18. №. 3, 89-106.
  • [8] Jie G., Shi Q., 2007, Definition and evaluation modeling of metro network invulnerability // Journal of China Railway Society, Vol.29. №. 3, 26-36.
  • [9] Lu K., Han B., Lu F., 2016, Urban Rail Transit in China: Progress Report and Analysis (2008–2015). Urban Rail Transit, 2, 93–105.
  • [10] Kansky K.J., 1963, Structure of transportation networks: relationships between network geometry and regional characteristics. Chicago: Chicago Univ., Department of geography, Research paper, 155 p.
  • [11] Lam T.N., Schuler H.J., 1981, Public Transit Connectivity. V. 1. Report DMT-084. Irvine: Univ. of California, 51 p.
  • [12] Lam T.N., Schuler H.J., 1982, Connectivity Index for System wide Transit Route and Schedule Performance //Transportation Res. Rec. 854. TRB. National Res. Council. Washington, D.C., 17–23.
  • [13] Musso A., Vuchic V.R., 1988, Characteristics of Metro Networks and Methodology for Their Evaluation // Transportation Res. Rec. V. 1162. TRB. National Res. Council. Washington, D.C., 22–33.
  • [14] Panov R.D., 2020, Evolyutsiya prostranstvennoi struktury krupmeishih metropolitenov mira [Evolution of Spatial Structure of the World’s Biggest Subway Networks], Moscow, Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. Vol.1, 20-26.
  • [15] Roth C., Kang M.C., Batty M., Barthelemy M., 2012, A long-time limit for world subway networks // Journal of Royal Society Interface, Vol. 9. № 9, 2540–2550.
  • [16] Taaffe E.J., 1996, Geography of Transportation. Prentice-Hall, Upper Saddle River, N.J., 422 p.
  • [17] Tarkhov S.A., 2005, Evolyutsionnaya morfologiya transportnykh setei [Evolutional Morphology of Transport Networks]. Smolensk, Moscow: Universum Publ., 384 p. (in Russian).
  • [18] Wu X., Dong H. Tse C.H. et al., 2018, Analysis of metro network performance from a complex network perspective // Physica.A. Vol.492, 553-563.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b24627c-dbe4-411d-be9c-8f04c314c1e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.