PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Podiform chromitites from the Variscan ophiolite serpentinites of Lower Silesia (SW Poland) : petrologic and tectonic setting implications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Gogołów-Jordanów Serpentinite Massif (GJSM) and the Braszowice-Brzeźnica Massif (BBM) are the largest serpentinite outcrops in the Fore-Sudetic Block (NE part of the Bohemian Massif, Central Europe). The GJSM is a peridotitic member of the Variscan Ślęża Ophiolite (SW Poland). Podiform bodies (veins and pockets) of chromitite are found on the Czernica Hill (GJSM) and on the Grochowiec Hill (BBM) within strongly serpentinized harzburgites which occur several hundred metres below Paleo-Moho. Chromitites consist of rounded chromite grains up to 3 cm across, and of chlorite filling the interstices. The veins are embedded in serpentine-olivine-chlorite aggregates. Relics of Mg-rich olivine (Fo95-96) occur in massive chromitite in the BBM. The bulk-rock total PGEs content is very low (42-166 ppm) and the PGE pattern is negatively sloped towards Pt and Pd and depleted relative to chondrite. The primary chromite I is aluminous (Cr# 0.50-0.52, Mg# 0.60-0.70). The highly aluminous and magnesian (Cr# 0.38, Mg# 0.80) chromite Ia occurs locally in the BBM. The secondary chromite II is enriched in Cr and impoverished in Al (Cr# 0.57-0.69), it replaces chromite I. Both chromite I and II contain small amounts of Ti (<0.14 wt% TiO2). Silicate inclusions in chromite are scarce. The composition and mode of occurrence of both the GJSM and the BBM chromitites are similar, thus they were formed probably under the same conditions. Textures of the chromitites suggest their magmatic origin. Their current geological position indicates their emplacement and crystallization in the uppermost mantle harzburgites occurring below the Moho Transition Zone (MTZ). The chromitites and hosting harzburgites were subjected to the greenschist-facies metamorphic overprint. The moderate Cr# and low PGEs contents suggest that the chromitites originated in the arc setting, thus their host ophiolite is of supra-subduction type.
Rocznik
Strony
56--66
Opis fizyczny
Bibliogr. 44 poz., rys., wykr.
Twórcy
  • University of Wrocław, Institute of Geological Sciences, pl. M. Borna 9, 50-204 Wrocław, Poland
autor
  • University of Wrocław, Institute of Geological Sciences, pl. M. Borna 9, 50-204 Wrocław, Poland
autor
  • University of Vienna, Department of Lithospheric Research, Althanstrasse 14, 1090 Vienna, Austria
autor
  • University of Wrocław, Institute of Geological Sciences, pl. M. Borna 9, 50-204 Wrocław, Poland
Bibliografia
  • 1. Abily, B., Ceuleneer, G., 2013. The dunitic mantle-crust transition zone in the Oman ophiolite: residue of melt-rock interaction, cumulates from high-MgO melts or both? Geology, 41: 67-70.
  • 2. Ahmed, A.H., Arai, S., 2002. Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contributions to Mineralogy and Petrology, 143: 263-278.
  • 3. Aleksandrowski, P., Mazur, S., 2002. Collage tectonics in the northeasternmost part of the Variscan Belt: the Sudetes, Bohemian Massif. Geological Society Special Publications, 201: 237-277.
  • 4. Arai, S., Okamura, H., Kadoshima, K., Tanaka, Ch., Suzuki, K., Ishimaru, S., 2011. Chemical characteristics of chromian spinel in plutonic rocks: Implications for deep magma processes and discrimination of tectonic setting. Island Arc 20: 125-137.
  • 5. Arenas, R., 1991. Opposite P, T, t paths of Hercynian metamorphism between the upper units of the Cabo Ortegal Complex and their substratum (northwest of the Iberian Massif). Tectonophysics, 191: 347-364.
  • 6. Bach, W., Paulick, H., Garrido, C.J., Ildefonse, B., Meurer, W., Humphris, S.E., 2006. Unravelling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from mAr 15şN (ODP Leg 209, Site 1274). Geophysical Research Letters, 25: 1467-1470.
  • 7. Birecki, T., 1962. Occurrence of chromites at Tąpadła (in Polish with English summary). Przegląd Geologiczny, 10: 144-150.
  • 8. Borisova, A.Y., Ceuleneer, G., Kamenetsky, V.S., Arai, S., Béjina, F., Abily, B., Bindeman, I.N., Polvé, M., de Parseval, P., Aigouy, T., Pokrowski, G.S., 2012. A new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions. Journal of Petrology, 53: 2411-2440.
  • 9. Boudier, F., Nicolas, A., 1995. Nature of the Moho Transition Zone in the Oman Ophiolite. Journal of Petrology, 36: 777-796.
  • 10. Delura, K., 2012a. Chromitites from the Sudetic ophiolite: origin and al teration. Archivum Mineralogiae Monograph, 4: 1-91.
  • 11. Delura, K., 2012b. Chromitites from the Braszowice-Brzeźnica Massif, Lower Silesia - potential chromium source for industry? Gospodarka Surowcami Mineralnymi, 28: 19-43.
  • 12. Dilek, Y., Furnes, H., 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. GSA Bulletin, 123: 387-411.
  • 13. Dubińska, E., Gunia, P., 1997. Sudetic ophiolite: current view on its dynamic model. Geological Quarterly, 41 (1): 1-20.
  • 14. Dubińska, E., Bylina, P., Kozłowski, A., Dõrr, W., Nejbert, K., 2004. U-Pb dating of serpentinization: hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chemical Geology, 203: 183-203.
  • 15. Dziedzic, K., Dziedzicowa, H., 2000. Genetic relation ships between metabasalts and related gabbroic rocks: an example from the Fore-Sudetic Block, SW Po land. Geologia Sudetica, 33: 33-48.
  • 16. Floyd, P.A., Kryza, R., Crowley, Q.G., Winchester, J.A., Abdel Wahed, M., 2002. Ślęża ophiolite: geochemical features and relationship to Lower Palaeozoic rift magmatism in the Bohemian Massif. Geological Society Special Publications, 201:197-215.
  • 17. Ghosh, B., Morishita, T., Bhatta, K. 2013. Significance of chromian spinels from the mantle sequence of the Andaman Ophiolite, India: Paleogeodynamic implications. Lithos, 164-167: 86-96.
  • 18. González-Jiménez, J.M., Kerestedjian, T., Profenza, J.A., Gervilla, F., 2009. Metamorphism on chromite ores from the Dobromirtsi Ultramafic Massif, Rhodope Mounfains (SE Bulgaria). Geologica Acta, 7: 413-429.
  • 19. González-Jiménez, J.M., Proenza, J.A., Gervilla, F., Melgarejo, J.C., Blanco-Moreno, J.A., Ruiz-Sanchez, R., Griffin, W.L., 2011. High-Cr and high-Al chromitites from the Sagua de Tanamo district, Mayari-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos, 125: 101-121.
  • 20. González-Jiménez, J.M., Griffin, W.L., Proenza, J.A., Gervilla, F., O'Reilly, S., Akbulut, M., Pearson, N.J., Arai, S., 2014. Chromitites in ophiolites: How, where, when, why? Part II. The crystallization of chromitites. Lithos, 158: 140-158.
  • 21. Gunia, P., 1992. Petrology of the ultrabasic rocks from the Braszowice-Brzeźnica Massif (Fore-Sudetic Block). Geologia Sudetica, 26: 120-170.
  • 22. Jędrysek, M.O., Hałas, S., 1990. The origin of magnesite deposits from the Polish Foresudetic Block Ophiolites: Preliminary S13C and S18O investigations. Terra Nova, 2: 154-159.
  • 23. Kelemen, P.B., Shimizu, N., Salters, V.J.M., 1995. Extraction of the mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature, 375: 747-753.
  • 24. Kimball, K.L., 1990. Effects of hydrothermal alteration on the composition of chromian spinels. Contributions to Mineralogy and Petrology, 125: 337-346.
  • 25. Koga, K., Kelemen, P.B., Shimizu, N., 2001. Petrogenesis of the crust-mantle transition zone and the origin of lower crustal wehrlite in the Oman ophiolite. Geochemistry, Geophysics, Geosystems, 2: 2000G000132.
  • 26. Kossmann, B., 1890a. Chromerze in Niederschlesien. Tonindustrie Zeitung, 14: 736.
  • 27. Kossmann, B., 1890b. Neues Chromeisenerzlager in Niederschlesien. Stahl und Eisen, 12: 1085-1086.
  • 28. Kossmat, F., 1927. Gliederung des varistischen Gebirgsbaues. Abhandlungen Sachsischen Geologischen Landesamts, 1: 1-39.
  • 29. Kryza, R., Pin, C., 2010. The Central-Sudetic ophiolites (SW Poland): Petrogenetic issues, geochronology and palaeotectonic implications. Gondwana Research, 17: 292-305.
  • 30. Majerowicz, A., 1979. Grupa górska Ślęży a współczesne problemy geologiczne ofiolitów. Wybrane zagadnienia stratygrafii, petrografii i tektoniki wschodniego obrzeżenia gnejsów sowiogórskich i metamorfiku kłodzkiego. Materiały konferencji terenowej Nowa Ruda 8-9 IX. Wydawnictwo Uniwersytetu Wrocławskiego.
  • 31. Majerowicz, A., 2006. Krótki przewodnik terenowy po skałach ofiolitowego zespołu Ślęży oraz ich petrologicznej i geologicznej historii (in Polish). Acta Universitatis Wratislaviensis 2830, Wrocław 2006.
  • 32. Moreno, T., Gibbons, W., Prichard, H.M., Lunar, R., 2001. Platiniferous chromitite and the tectonic setting of ultramafic rocks in Cabo Ortegal, NW Spain. Journal of the Geological Society, 158: 601-614.
  • 33. Page, N.J., Pallister, J.S., Brown, M.A., Smewing, J.D., Haffity, J., 1982. Palladium, platinum, rhodium, iridium and ruthenium in chromite-rich rocks from the Samail ophiolite, Oman. Canadian Mineralogist, 20: 537-548.
  • 34. Pagé, B., Barnes, S.-J. 2009. Using trace elements in in chromites to constrain the origin of podiform chromitites in the Thetford Mine Ophiolite, Quebec, Canada. Economic Geology, 104: 997-1018.
  • 35. Pin, C., Majerowicz, A., Wojciechowska, I., 1988. Upper Paleozoic oceanic crust in the Polish Sudetes: Nd-Sm isotope and trace elements evidence. Lithos, 21: 195-209.
  • 36. Prichard, H.M., Lord, R.A., Neary, C.R., 1996. A model to explain the occurrence of Pt- and Pd-rich ophiolite complexes. Journal of the Geological Society, 153: 323-328.
  • 37. Prichard, H.M., Neary, C.R., Fisher, P.C., O'Hara, M.J., 2008. PGE-rich podiform chromitites in the Al 'Ays Ophiolite Complex, Saudi Arabia: an example of critical manile melting to exiract and concentrate PGE. Economic Geology, 103: 1507-1529.
  • 38. Prichard, H.M., Brough, C., 2009. Potential of ophiolite complexes to host PGE deposits. In: New Developments in Magmatic Ni-Cu and PGE Deposits (eds. C. Li and E.M. Ripley): 277-290. Geological Publishing House Beijing.
  • 39. Python, M., Ceuleneer, G., Arai, S., 2008. Chromian spinels in mafic-ultramafic mantle dykes: Evidence for a two-stage melt production during the evolution of the Oman ophiolite. Lithos, 106: 137-154.
  • 40. Roeder, P.L., Reynolds, I., 1991. Crystallization of chromite and chromium solubility in basaltic melts. Journal of Petrology, 32: 909-934.
  • 41. Rollison, H., Adentunji, J., 2013. Mani le podiform chromitites do not form beneath mid-ocean ridges: a case study from the Moho transition zone of the Oman ophiolite. Lithos, 177: 314-327.
  • 42. Spangenberg, K., 1943. Die Chromerzlagerstätte von Tampadel am Zobten. Zeitschrift für praktische Geologie, 51: 25-36.
  • 43. Streckeisen, A., 1974. Classification and nomenclature of plutonic rocks, recommendations of the IUGS subcomission on the systematics of igneous rocks. Geologische Rundschau, 63: 773-786.
  • 44. Wojtulek, P., Puziewicz, J., Ntaflos, T., 2013. The origin of the non-serpentinic phases of the Gogołów-Jordanów serpentinite massif (SW Poland). European Geosciences Union, General Assembly 2013, conference abstract. Online access: http://meetingorganizer.co per ni- cus.org/EGU2013/EGU2013-395.pdf
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b1da90e-a971-4584-b2b8-d432b4b4bcfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.