PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Neutralization of poultry waste by thermohydrolysis in near-critical water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main problem occurring during poultry and animal production is the management of waste generated in slaughterhouses and poultry processing plants. These wastes, due to the bacteriological threat and the difficulty in storage, adversely affect all elements of the environment and thus require quick neutralization. The prospective method of liquidation of this type of waste is thermohydrolysis in near-critical water. The aim of the work was to examine the decomposition of poultry waste, i.e. waste blood, soft tissues, chicken heads, feathers, subjected to the process of thermohydrolysis in near-critical water. The decomposition process was carried out at a pressure of 10 MPa in the temperature range of 120°C - 250°C and with a variable residence time in the reactor. Detailed analysis of the results allowed us to state that the longer the residence time in the reactor, the higher the content of soluble organic compounds in the liquid phase. The beneficial effect of applying the thermohydrolysis process on the increased reduction of organic substances present in the investigated wastes was also demonstrated.
Twórcy
autor
  • Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Wolczanska 213
  • Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Wolczanska 213
Bibliografia
  • [1] T.L. Oldfield, E. White, N.M. Holden, An environmental analysis of options for utilising wasted food and food residue. J. Environ. Manage. 183 (2016) 826-835
  • [2] J. Palatsi, M. Vinas, M. Guivernau, B. Fernandez, X. Flotats, Anaerobix digestion of slaughterhouse waste: Main process limitations and microbial community interactions, Bioresource Technology. 102 (2011) 2219-2227
  • [3] M. Edström, A. Nordberg, L. Thyselius, Anaerobic treatment of animal byproducts from slaughterhouses at laboratory and pilot scale, Appl. Biochem. Biotechnol. 109 (2003) 127-138
  • [4] P. Klintenberg, M. Jamieson, V. Kinyaga, M. Odlare, Assessing biogas potential of slaugter waste: Can biogas production solve a serious waste problem at abattoirs? Energy Procedia. 61 (2014) 2600-2603
  • [5] E. Cascarosa, G. Gea, J. Arauzo, Thermochemical processing of meat and bone meal: A review, Renevable and Sustainable Energy Reviews, 16 (1) (2012) 942-957
  • [6] J. A. Conesa, A. Fullana, R. Font, Thermal decomposition of meat and bone meal, Journal of Analytical and Applied Pyrolysis. 70 (2003) 619-630
  • [7] Rozporządzenie Parlamentu Europejskiego i Rady z dnia 21 października 2009 r. (WE) nr 1069/2009 określające przepisy sanitarne dotyczące produktów ubocznych pochodzenia zwierzęcego, nieprzeznaczonych do spożycia przez ludzi (Dz.U.UE.L.2009.300.1)
  • [8] R. Askin, S. Otles, Supercritical fluids, Technologia Alimentaria. 1 (4) (2005) 3-16
  • [9] M. J. Cocero, Supercritical water processes: Future prospects, The Jurnal of Supercritical Fluids. 134 (2018) 124-132
  • [10] A. Martin, M. D. Bermejo, M. J. Cocero, Recent developments of supercritical water oxidation: a patents review, Recent Pat. Chem. Eng. 4 (2011) 219-230
  • [11] N. Akiya, P. E. Savage, Roles of water for chemical reactions in high-temperature water, Chem. Rev. 102 (2002)
  • [12] A. Kruse, N. Dahmen, Water - a magic solvent for biomass conversion, The Journal of Supercritical Fluids. 96 (2015) 36-45
  • [13] W. He, G. Li, L. Kong, H. Wang, J. Huang, J. Xu, Application of hydrothermal reaction in resource recovery of organic wastes, Resour. Conserv. Recycl. 52 (2008) 691-699
  • [14] P. Kritzer, Corrosion in high-temperature and supercritical water and aqueous solutions: a review, The Journal of Supercritical Fluids. 29 (2004) 1-29
  • [15] L. Zhang, C. Xu, P. Champagne, Overview of recent advances in thermos-chemical conversion of biomass, Energy Convers. Manag. 51 (2010) 969-982
  • [16] H. A. Ruiz, R. M.Rodriguez-Jasso, B. D. Fernandes, A. A. Vicente, J. A. Teixeira, Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review. Renevable and Sustainable Energy Reviews. 21 (2013) 35-51
  • [17] S. S. Toor, L. Rosendahl, A. Rudolf, Hydrothermal liquefaction of biomass: a review of subcritical water technologies, Energy. 36 (2011) 2328-2342
  • [18] Ch. J. Martino, P. E. Savage, Thermal decomposition of substituted phenols in supercritical water. Ind. Eng. Chem. Res 36 (5) (1997) 1385-1390
  • [19] M. J. Antal, A. Brittain, C. DeAlmeida, S. Ramayya, J. C. Roy, Heterolysis and hemolysis in supercritical water, ACS Szmp. Ser. 329 (1987) 77-86
  • [20] P. Krammer, H. Vogel, Hydrolysis of esters in subcritical and supercritical water, The Journal of Supercritical Fluids. 16 (2000) 189-206
  • [21] J. M. L. Penninger, R. J. A. Kersten, H. C. L. Baur, Hydrolysis of diphenylether in supercritical water. Effects of dissolved NaCl, The Journal of Supercritical Fluids. 17 (2000) 215-226
  • [22] X. Wu, J. Fu, X. Lu, Hydrothermal decomposition of glucose and fructose with inorganic and organic potassium salts, Bioresource Technology. 119 (2012) 48-54
  • [23] A. Martin, A. Navarrete, M. D. Bermejo, Applications of supercritical technologies to CO2 reduction: Catalyst development and process intensification, The Jurnal of Supercritical Fluids. 134 (2018) 141-149
  • [24] J. Yin, Z. Cheng, L. Guo, S. Li, H. Jin, Products distribution and influence of nickel catalyst on glucose hydrothermal decomposition, International Journal of Hydrogen Energy. 42 (7) (2017) 4642-4650
  • [25] C. M. Matinez, D. A. Cantero, M. D. Bermejo, M. J. Cocero, Hydrolysis of cellulose in supercritical; water: reagent concentration as a selectivity factor. 22 (4) (2015) 2231-2243
  • [26] Y. Matsumura, T. Minowa, B. Potic, S. R. A. Kersten, W. Prins, W. P. M. van Swaaij, B. van de Beld, D. C. Elliott, G. C. Neuenschwander, A. Kruyse, M. J. Antal Jr., Biomass gasification in near- and super-critical water: status and prospects, Biomass Bioenergy. 29 (2005) 269-292
  • [27] J. Mucha, R. Zarzycki, Analysis of wet oxidation process after initial thermohydrolysis of excess sewage sludge, Water Research. 42 (12) (2008) 3025-3032
  • [28] J. Laurent, M. Casellas, H. Carrere, C. Dagot, Effects of thermal hydrolysis on activated sludge solubilization, surface properties and heavy metals biosorption, Chemical Engineering Journal. 166 (2011) 841-849
  • [29] ] Z. Fang, Jr. R. L. Smith, H. Inomata, K. Arai, Phase behavior and reaction of polyethylene in supercritical water at pressures up to 2,6 GPa and temperatures up to 670°C, The Journal of Supercritical Fluids. 16 (2000) 207-216
  • [30] F. Dubelley, E. Planes, C. Bas, E. Pons, B. Yrieix, L. Flandin, The hydrothermal degradation of PET in laminated multilayer, European Polymer Journal. 87 (2017) 1-13
  • [31] M. Imbierowicz, A. Chacuk, Kinetic model of excess activated sludge thermohydrolysis, Water Research. 46 (2012) 5747-5755
  • [32] C. Bougier, J. P. Delgenus, H. Carrerre, Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion, Chemical Engineering Journal. 139 (2008) 236-244
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b1cf706-d8cb-4701-bc89-069dd979b543
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.