PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of injuries of a driver of a roll caged car sustained during a rollover crash

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza obrażeń doznanych przez kierowcę samochodu wyposażonego w klatkę bezpieczeństwa podczas dachowania
Języki publikacji
EN
Abstrakty
EN
The aim of the study is to analyze the extent of injuries sustained by the driver during a crash rollover. A safety cage for 1996 Dodge Neon was designed following FIA guidelines as well as a seat. 50th percentile male HYBRID III ATD model was utilized. The crashworthiness of the test setup and verification of the injury measures were examined utilizing the Finite Elements Method in LS-DYNA software. Biomechanical injury measures that were investigated include neck normal and shear force and chest deflection.
PL
Praca przedstawia badania dotyczące ustalenia rozległości obrażeń (Siła normalna oraz tnąca w odcinku szyjnym kręgosłupa oraz ugięcie klatki piersiowej) kierowcy samochodu wyposażonego w klatkę bezpieczeństwa podczas dachowania. Do symulacji został użyty model dyskretny 50 centylowego manekina Hybrid III. Test dachowania pojazdu (1996 Dodge Neon) został przeprowadzony przy użyciu Metody Elementów Skończonych w programie LS-DYNA.
Rocznik
Tom
Strony
27--34
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw
Bibliografia
  • [1] E. Nassiopoulos and J. Njuguna, “An assessment of the side impact protection systems (SIPS) for racing drivers in motorsport rallying championships,” 2010.
  • [2] N. A. Rose, G. Beauchamp, and S. J. Fenton, “The influence of vehicle-to-ground impact conditions on rollover dynamics and severity,” SAE Tech. Pap., vol. 2008, no. 724, pp. 776–790, 2008.
  • [3] D. Friedman, S. Bozzini, and J. Paver, “Status of Comparative Dynamic Rollover Compliance Research and Testing,” 2010.
  • [4] J. W. Carter, J. L. Habberstad, and J. Croteau, “A comparison of the controlled rollover impact system (CRIS) with the J2114 rollover dolly,” SAE Tech. Pap., no. 724, 2002.
  • [5] E. R. Cooper, E. A. Moffatt, A. M. Curzon, B. J. Smyth, and K. F. Orlowski, “Repeatable dynamic rollover test procedure with controlled roof impact,” SAE Tech. Pap., no. 724, pp. 1–9, 2001.
  • [6] H. M. Berg Alexander, Krehl Michael, Behling Rolf, “Rollover Crashes - Real World Studies, Tests and Safety Systems,” 2003.
  • [7] E. A. Moffatt, E. R. Cooper, J. J. Croteau, K. F. Orlowski, D. R. Marth, and J. W. Carter, “Matched-Pair Rollover Impacts of Rollcaged and Production Roof Cars Using the Controlled Rollover Impact System (CRIS),” SAE Tech. Pap. Ser., vol. 1, no. 724, 2010.
  • [8] K. Friedman, J. Hutchinson, and D. Mihora, “Finite element modeling of rollover crash tests with Hybrid III dummies,” SAE Int. J. Passeng. Cars - Electron. Electr. Syst., vol. 1, no. 1, pp. 846–852, 2009.
  • [9] R. F. Kulak, “On Rollover Simulations of a Full-sized Sedan,” 2014.
  • [10] J. Hutchinson, K. Friedman, and D. Mihora, “Finite element modeling comparisons of rollover test devices,” SAE 2011 World Congr. Exhib., 2011.
  • [11] National Crash Analysis Center, “Finite Element Model of Dodge Neon FE Model of Dodge Neon,” 1996.
  • [12] Federation Internationale de l’Automobile, “FIA Standard 8862-2009: Advanced Racing Seat,” 2015.
  • [13] Virgamet, “Low-Alloy Boiler Structural Steel 20HM, 25HM, AISI 4130, SAE 4130 and 25CrMo4 for Thermal Improvement and High Temperature Operation in Accordance with PN-89 / H-84030/04, PN-75 / H-84024, EN 10083-3 EN 10269.” https://virgamet.com/25hm-25crmo4-1-7218-24crmo5-20crmo4-sae-aisi-4130-alloy-steel. (Accessed: 29.01.2020).
  • [14] J. Peliński and M. Ptak, “Approach to Verification of a Roll Cage Survival Space with Finite Element Analysis,” Aktual. Probl. Biomech., no. 17, pp. 93–100, 2019.
  • [15] Custom Cages, “Roll cages - what material?” https://www.customcages.co.uk/roll-cages/what-material. (Accessed: 29-01-2020).
  • [16] D. Li, Z. Zhu, S. Xiao, G. Zhang, and Y. Lu, “Plastic flow behavior based on thermal activation and dynamic constitutive equation of 25CrMo4 steel during impact compression,” Mater. Sci. Eng. A, vol. 707, pp. 459–465, 2017.
  • [17] E. Rusiński, Metoda elementów skończonych: System COSMOS/M. Warszawa: Wydawnictwa Komunikacji i Łączności, 1994.
  • [18] The HyperWorks University Team, Practical Aspects of Finite Element Simulations. 2011.
  • [19] R. Eppinger et al., “Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems - II,” NHTSA, 1999.
  • [20] C. Thorbole, “Seatbelt submarining injury and its prevention countermeasures: How a cantilever seat pan structure exacerbate submarining,” J. Fam. Med. Prim. Care, vol. 4, no. 4, p. 587, 2015.
  • [21] M. G. Burkacki, Michał, Kamil Joszko, “Biomechaniczna Analiza Wypadku 34 Peliński J., Dymek M.
  • [22] K. Joszko et al., “Biomechanical analysis of injuries of rally driver with head supporting device,” Acta Bioeng. Biomech., vol. 18, no. 4, pp. 159–169, 2016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b177fa9-f1de-4224-a010-47245e36499b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.