PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sustainable development of renewable energy in shipping: technological and environmental prospects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shipping is one of the major sources of greenhouse gas emissions; therefore, immediate actions must be taken in the field of sustainable development. This study focuses on exploring the use of renewable energy to mitigate emissions and enhance energy efficiency on board ships. Hence, technologies for capturing, utilizing, and storing solar, wind, and carbon energy are investigated. Further, the study weighs these approaches in terms of benefits, drawbacks, and potential application in sustainable maritime operations. To quantify the practicability of the solutions analyzed, an interdisciplinary approach intertwining feasibility analysis, simulation modeling, and policy evaluation is used. Topics discussed include technological barriers, economic barriers, and regulatory frameworks. It also highlights recent advances with great environmental potential in shipping, such as hybrid propulsion systems and fuel cell technologies. The results showed that the hybrid systems with renewable energy combined with CCUS can reduce CO₂ emissions from ships up to 90%, which, in the best case, simultaneously imparts an increased operational efficiency and environmental sustainability. The study therefore examined regulatory and policy options that could facilitate the transition to renewable energy in this sector, and the industrial application of these technologies is thus presented as a key stage in environmentally sustainable development.
Rocznik
Tom
Strony
165--188
Opis fizyczny
Bibliogr. 61 poz.
Twórcy
  • Department of Navigation and Maritime Safety, Odesa National Maritime University, 34, Mechnikov Str., Odesa, 65029, Ukraine
  • Department of Navigation and Maritime Safety, Odesa National Maritime University, 34, Mechnikov Str., Odesa, 65029, Ukraine
  • Department of Cars and Carriage Facilities, State University of Infrastructure and Technologies, 9 Kyrylivska str., 04071, Kyiv, Ukraine
  • Department of Fleet Operation and Shipping Technologies, Odesa National Maritime University, 34, Mechnikov Str., Odesa, 65029, Ukraine
autor
  • Department of Navigation and Maritime Safety, Odesa National Maritime University, 34, Mechnikov Str., Odesa, 65029, Ukraine
Bibliografia
  • 1. Stolz B., M. Held, G. Georges, K. Boulouchos. 2022. "Techno-economic analysis of renewable fuels for ships carrying bulk cargo in Europe." Nature Energy 7: 203-212. DOI: https://doi.org/10.1038/s41560-021-00957-9.
  • 2. Wolfram P., P. Kyle, X. Zhang, S. Gkantonas, S. Smith. 2022. "Using ammonia as a shipping fuel could disturb the nitrogen cycle." Nature Energy 7: 1112-1114. DOI: https://doi.org/10.1038/s41560-022-01124-4.
  • 3. Budashko V., T. Obniavko, O. Onishchenko, Y. Dovidenko, D. Ungarov. 2020. "Main Problems of Creating Energy-efficient Positioning Systems for Multipurpose Sea Vessels." IEEE 6th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC) 9255514: 106-109. DOI: https://doi.org/10.1109/MSNMC50359.2020.9255514.
  • 4. Brynolf S., M. Grahn, J. Hansson, A. Korberg, E. Malmgren. 2022. "Sustainable fuels for shipping." In: Sustainable Energy Systems on Ships. DOI: https://doi.org/10.1016/B978-0-12-824471-5.00017-7.
  • 5. Pilkington B. 2022. "Solar Energy Management Systems on an Industry-First Vessel." Azo Cleantech. Available at: https://www.azocleantech.com/article.aspx?ArticleID=1426.
  • 6. Dawson C., P. Dargusch, G. Hill. 2022. "Assessing How Big Insurance Firms Report and Manage Carbon Emissions: A Case Study of Allianz." Sustainability 14(4): 2476. DOI: https://doi.org/10.3390/su14042476.
  • 7. Pascual C.V., J.P. García, R.G. García. 2021. "Wind Energy Ships: Global Analysis of Operability." Journal of Marine Science and Engineering 9(5): 517. DOI: https://doi.org/10.3390/jmse9050517.
  • 8. Moshiul A.M., R. Mohammad, F.A. Hira. 2023. "Alternative Fuel Selection Framework toward Decarbonizing Maritime Deep-Sea Shipping." Sustainability 15(6): 5571. DOI: https://doi.org/10.3390/su15065571.
  • 9. Babarit A., F. Gorintin, P. Belizal, A. Neau, G. Bordogna, J.C. Gilloteaux. 2021. "Exploitation of the far-offshore wind energy resource by fleets of energy ships – Part 2: Updated ship design and cost of energy estimate." Wind Energy Science 6: 1191-1204. DOI: https://doi.org/10.5194/wes-6-1191-2021.
  • 10. Setiawan B., E. Putra, I. Siradjuddin, M. Junus. 2021. "Optimization of Solar and Wind Hybrid Energy for Model Catamaran Ship." IOP Conference Series: Materials Science and Engineering 1073: 012044. DOI: https://doi.org/10.1088/1757-899X/1073/1/012044.
  • 11. Yolhamid M.N.A.G., M.N. Razali, M.N. Azzeri, M.S.M. Yusop, A.M.A. Zaidi, N.Z. Abidin. 2021. "Development and Experimental Investigation of a Marine Vessel Utilizing the Energy Ship Concept for Far Offshore Wind Energy Conversion." Transactions on Maritime Science 10:305-317. DOI: https://doi.org/10.7225/toms.v10.n02.001.
  • 12. Clodic G., A. Babarit, J. Gilloteaux. 2018. "Wind Propulsion Options for Energy Ships." Proceedings of the ASME 2018, 1st International Offshore Wind Technical Conference, V001T01A002. DOI: https://doi.org/10.1115/IOWTC2018-1056.
  • 13. Vasilescu M.V., E. Ivanovich. 2023. "Installing a Hybrid Energy Balance System on a Port-Container Ship." Operation of Maritime Transport: 167-178. DOI: https://doi.org/10.34046/aumsuomt105/32.
  • 14. Knezevic I., S. Dragicevic, D. Kovac, N. Pudar. 2022. "Energy Efficiency Analysis of Solar Powered Ship - The Case of Bay of Kotor." 1st International Conference on Advances in Science and Technology Coast, May 26-29, 2022. Available at: https://confcoast.com/imgpublications/49/Zbornik%20radova_merged%20(1).pdf.
  • 15. Tuswan T., S. Misbahudin, S. Junianto, H. Yudo, A.W.B. Santosa, A. Trimulyono, O. Mursid, D. Chrismianto. 2022. "Current Research Outlook on Solar-Assisted New Energy Ships: Representative Applications and Fuel & GHG Emission Benefits." IOP Conference Series: Earth and Environmental Science 1081: 012011. DOI: https://doi.org/10.1088/1755-1315/1081/1/012011.
  • 16. Visa I., A. Cotorcea, M. Neagoe, M. Moldovan. 2016. "Adaptability of Solar Energy Conversion Systems on Ships." IOP Conference Series: Materials Science and Engineering 147: 012070. DOI: https://doi.org/10.1088/1757-899X/147/1/012070.
  • 17. Zhu Y., S. Zhou, Y. Feng, Z. Hu, L. Yuan. 2017. "Influences of Solar Energy on the Energy Efficiency Design Index for New Building Ships." International Journal of Hydrogen Energy 42. DOI: https://doi.org/10.1016/j.ijhydene.2017.06.042.
  • 18. Peng C., S. Shounan, L. Hai, Z. Qiang. 2014. "Modeling and Simulation of Ship Power System Integration of Solar Energy." IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, 1-5. DOI: https://doi.org/10.1109/ITEC-AP.2014.6940746.
  • 19. Nugraha I.M.A. 2020. "Study on the Use of Solar Power Plants as Energy Sources on Fishing Boats in East Nusa Tenggara." Jurnal Sumberdaya Akuatik Indopasifik 4(2): 101-110. DOI: https://doi.org/10.46252/jsai-fpik-unipa.2020.Vol.4.No.2.76.
  • 20. Al Baroudi H., A. Awoyomi, K. Patchigolla, K. Jonnalagadda, E.J. Anthony. 2021. "A Review of Large-Scale CO2 Shipping and Marine Emissions Management for Carbon Capture, Utilisation and Storage." Applied Energy 287: 116510. DOI: https://doi.org/10.1016/j.apenergy.2021.116510.
  • 21. Binu K., A. Viswanath, M. Raj. 2023. "Role of CO₂ Carriers in Carbon Capture Utilization and Sequestration as a Part of Global Decarbonization Strategy." International Journal for Research in Applied Science and Engineering Technology 11: 275-287. DOI: https://doi.org/10.22214/ijraset.2023.49017.
  • 22. European Commission, Joint Research Centre, Kapetaki Z., Miranda Barbosa E. 2019. "Carbon Capture Utilisation and Storage: Technology Development Report." Publications Office. Available at: https://data.europa.eu/doi/10.2760/185420.
  • 23. Huang L., Z. Hou, Y. Fang, J. Liu, T. Shi. 2023. "Evolution of CCUS Technologies Using LDA Topic Model and Derwent Patent Data." Energies 16(6): 2556. DOI: https://doi.org/10.3390/en16062556.
  • 24. Wesche J., S. Germán, L. Gonçalves, I. Jödicke, S. López-Asensio, A. Prades, S. Preuß, E. Dütschke, C. Algado. 2022. "CCUS or no CCUS? Societal Support for Policy Frameworks and Stakeholder Perceptions in France, Spain, and Poland." Greenhouse Gases: Science and Technology 13. DOI: https://doi.org/10.1002/ghg.2195.
  • 25. Canteli P., J. Crespo, R. Orío, J. Mediato, A. Ramos, E. Berrezueta. 2022. "Techno-economic Evaluation of Regional CCUS Implementation: The STRATEGY CCUS Project in the Ebro Basin (Spain)." Greenhouse Gases: Science and Technology. DOI: https://doi.org/10.1002/ghg.2193.
  • 26. Li X.Y., X. Gao, J.J. Xie. 2022. "Comparison and Clarification of China and US CCUS Technology Development." Atmosphere 13: 2114. DOI: https://doi.org/10.3390/atmos13122114.
  • 27. Lee S. 2022. "The Study on the Establishment of Relationship Between CCUS and Emission Trading System for Efficient Carbon Reduction." Korean Public Land Law Association 100: 377-406. DOI: https://doi.org/10.30933/KPLLR.2022.100.377.
  • 28. Onyshchenko S., O. Shibaev, O. Melnyk. 2021. "Assessment of Potential Negative Impact of the System of Factors on the Ship's Operational Condition During Transportation of Oversized and Heavy Cargoes." Transactions on Maritime Science 10(1): 126-134. DOI: https://doi.org/10.7225/toms.v10.n01.009.
  • 29. Burmaka I., I. Vorokhobin, O. Melnyk, O. Burmaka, S. Sagin. 2022. "Method of Prompt Evasive Maneuver Selection to Alter Ship's Course or Speed." Transactions on Maritime Science 11(1): 1-9. DOI: https://doi.org/10.7225/toms.v11.n01.w01.
  • 30. Melnyk O., S. Onyshchenko. 2022. "Ensuring Safety of Navigation in the Aspect of Reducing Environmental Impact." Lecture Notes in Networks and Systems 463: 95-103. DOI: https://doi.org/10.1007/978-3-031-03877-8_9.
  • 31. Onyshchenko S., O. Melnyk. 2021. "Probabilistic Assessment Method of Hydrometeorological Conditions and Their Impact on the Efficiency of Ship Operation." Journal of Engineering Science and Technology Review 14(6): 132-136. DOI: https://doi.org/10.25103/jestr.146.15.
  • 32. Melnyk O., M. Malaksiano. 2020. "Effectiveness Assessment of Non-Specialized Vessel Acquisition and Operation Projects, Considering Their Suitability for Oversized Cargo Transportation." Transactions on Maritime Science 9(1): 23-34. DOI: https://doi.org/10.7225/toms.v09.n01.002.
  • 33. Fomin O., A. Lovska, V. Píštěk, P. Kučera. 2019. "Dynamic Load Computational Modelling of Containers Placed on a Flat Wagon at Railroad Ferry Transportation." Vibroengineering Procedia 29: 118-123. Available at: https://www.jvejournals.com/article/21132.
  • 34. Fomin O., O. Logvinenko, O. Burlutsky, A. Rybin. 2018. "Scientific Substantiation of Thermal Leveling for Deformations in the Car Structure." International Journal of Engineering & Technology 7(4.3): 125-129. DOI: https://doi.org/10.14419/ijet.v7i4.3.19721.
  • 35. Varbanets R., O. Fomin, V. Píštěk, V. Klymenko, D. Minchev, A. Khrulev, V. Zalozh, P. Kučera. 2021. "Acoustic Method for Estimation of Marine Low-Speed Engine Turbocharger Parameters." Journal of Marine Science and Engineering 9(3): 321. DOI: https://doi.org/10.3390/jmse9030321.
  • 36. Onyshchenko S., O. Melnyk. 2022. "Efficiency of Ship Operation in Transportation of Oversized and Heavy Cargo by Optimizing the Speed Mode Considering the Impact of Weather Conditions." Transport and Telecommunication 23(1): 73-80. DOI: https://doi.org/10.2478/ttj-2022-0007.
  • 37. Tuğba D.G., A.L.P. Kadir. 2020. "Modeling of Greenhouse Gas Emissions from the Transportation Sector in Istanbul by 2050." Atmospheric Pollution Research 11. DOI: https://doi.org/10.1016/j.apr.2020.08.034.
  • 38. IEA. 2023. Tracking Clean Energy Progress 2023. IEA, Paris. Available at: https://www.iea.org/reports/tracking-clean-energy-progress-2023.
  • 39. Omer Z., A. Alameri, A. Fardoun, A. Hussein. 2015. "An Experimental Study on Pulse Discharge of Gel and AGM Lead-Acid Batteries by Varying the Frequency." UAE Graduate Students Research Conference 1.
  • 40. Tang Z., J. Wang, X. Mao, Q. Chen, Z. Xu, J. Zhang. 2007. "Investigation and Application of Polysiloxane-Based Gel Electrolyte in Valve-Regulated Lead-Acid Battery." Journal of Power Sources 168: 49-57. DOI: https://doi.org/10.1016/j.jpowsour.2006.12.031.
  • 41. Yang J., R. Ding, C. Liu, W. Shi, L. Chen, S. Liu, X. Yin. 2023. "Renewable Energy Storage Based on the Electrochemical Cycle of Hydrogen Peroxide." ECS Meeting Abstracts MA2023-01: 808-808. DOI: https://doi.org/10.1149/MA2023-013808mtgabs.
  • 42. Ahmad F., S. Bandh. 2023. Renewable Energy in Circular Economy. Springer Cham. ISBN: 978-3-031-42220-1.
  • 43. Aslanbay Guler B., C. Gürlek, Y. Şahin, S. Oncel, E. Imamoglu. 2023. "Renewable Bioethanol for a Sustainable Green Future." In: A Sustainable Green Future. DOI: https://doi.org/10.1007/978-3-031-24942-6_21.
  • 44. Wang K., Y. Li, X. Wang, Z. Zhao, N. Yang, S. Yu, Y. Wang, Z. Huang, Y. Tao. 2021. "Full Life Cycle Management of Power System Integrated with Renewable Energy: Concepts, Developments and Perspectives." Frontiers in Energy Research 9. DOI: https://doi.org/10.3389/fenrg.2021.680355.
  • 45. Arruda G., F. Arruda. 2019. Renewable Energy for the Arctic: New Perspectives. Routledge.
  • 46. Guo H., Q. Chen, M. Shahidehpour, Q. Xia, C. Kang. 2022. "Bidding Behaviors of GENCOs Under Bounded Rationality with Renewable Energy." Energy 250: 123793. DOI: https://doi.org/10.1016/j.energy.2022.123793.
  • 47. Volodarets M., I. Gritsuk, N. Chygyryk, I. Bilousov, A. Golovan, O., Hlushchenko, V. Volska, D. Pogorletsky, O. Volodarets. 2019. "Optimization of Vehicle Operating Conditions by Using Simulation Modeling Software." SAE Technical Paper 2019-01-0099. DOI: https://doi.org/10.4271/2019-01-0099.
  • 48. Sagin S., O. Semenov. 2016. "Marine Slow-Speed Diesel Engine Diagnosis with View to Cylinder Oil Specification." American Journal of Applied Sciences 13(5): 618-627. DOI: https://doi.org/10.3844/ajassp.2016.618.627.
  • 49. Zablotsky Y., S. Sagin. 2016. "Enhancing Fuel Efficiency and Environmental Specifications of a Marine Diesel When Using Fuel Additives." Indian Journal of Science and Technology 9(46): 107516. DOI: https://doi.org/10.17485/ijst/2016/v9i46/107516.
  • 50. Zaporozhets A., A. Sverdlova. 2021. "Photovoltaic Technologies: Problems, Technical and Economic Losses, Prospects." The 1st International Workshop on Information Technologies: Theoretical and Applied Problems, CEUR Workshop Proceedings, 3039: 166-1811. Available at: http://ceur-ws.org/Vol-3039/paper19.pdf.
  • 51. Zaporozhets A. 2021. "Correlation Analysis Between the Components of Energy Balance and Pollutant Emissions." Water, Air, & Soil Pollution 232(3): 114. DOI: https://doi.org/10.1007/s11270-021-05048-9.
  • 52. Gritsuk I., D. Pohorletskyi, V. Mateichyk, R. Symonenko, M. Tsiuman, M. Volodarets, N. Bulgakov, V. Volkov, V. Vychuzhanin, Y. Grytsuk, M. Ahieiev, I. Sadovnyk. 2020. "Improving the Processes of Thermal Preparation of an Automobile Engine with Petrol and Gas Supply Systems (Vehicle Engine with Petrol and LPG Supplying Systems)." SAE Technical Papers. DOI: https://doi.org/10.4271/2020-01-2031.
  • 53. Mukhamediev R., Y. Amirgaliyev, Y. Kuchin, M. Aubakirov, A. Terekhov, T. Merembayev, M. Yelis, E. Zaitseva, V. Levashenko, Y. Popova, A. Symagulov, L. Tabynbayeva, 2023. "Operational Mapping of Salinization Areas in Agricultural Fields Using Machine Learning Models Based on Low-Altitude Multispectral Images." Drones 7(6): 357. DOI: https://doi.org/10.3390/drones7060357.
  • 54. Popova Y. 2020. "Economic or Financial Substantiation for Smart City Solutions: A Literature Study." Economic Annals-XXI 183(5-6): 125-133. DOI: https://doi.org/10.21003/EA.V183-12.
  • 55. Mukhamediev R.I., T. Merembayev, Y. Kuchin, D. Malakhov, E. Zaitseva, V. Levashenko, Y. Popova, A. Symagulov, G. Sagatdinova, Y. Amirgaliyev. 2023. "Soil Salinity Estimation for South Kazakhstan Based on SAR Sentinel-1 and Landsat-8,9 OLI Data with Machine Learning Models." Remote Sensing 15(17): 4269. DOI: https://doi.org/10.3390/rs15174269.
  • 56. Lapkina I.O., M.O. Malaksiano. 2016. "Modelling and Optimization of Perishable Cargo Delivery System Through Odesa Port." Actual Problems of Economics 177(3): 353-365.
  • 57. Romanuke V.V., A.Y. Romanov, M.O. Malaksiano. 2022. "Pseudorandom Number Generator Influence on the Genetic Algorithm Performance to Minimize Maritime Cargo Delivery Route Length." Pomorstvo 36(2): 249-262. DOI: https://doi.org/10.31217/p.36.2.9.
  • 58. Romanuke V.V., A.Y. Romanov, M.O. Malaksiano. 2022. "Crossover Operators in a Genetic Algorithm for Maritime Cargo Delivery Optimization." Journal of Eta Maritime Science 10(4): 223-236. DOI: https://doi.org/10.4274/jems.2022.80958.
  • 59. Onyshchenko S., A. Bondar, V. Andrievska, N. Sudnyk, O. Lohinov. 2019. "Constructing and Exploring the Model to Form the Road Map of Enterprise Development." Eastern-European Journal of Enterprise Technologies 5(3-101): 33-42. DOI: https://doi.org/10.15587/1729-4061.2019.179185.
  • 60. Ketfi M., M. Djermouni, A. Ouadha. 2024. "Thermodynamic-based Comparison of ORC, TFC and OFC Systems for Waste Heat Recovery from a Marine Diesel Engine." Journal of Maritime Research 21(1): 54-58.
  • 61. Safuan. 2024. "Opportunities and Challenges of Implementing Green and Smart Port Concepts in Indonesia." Journal of Maritime Research 21(1): 168-173.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b0e931b-e9ce-4959-9741-ecac3c5ceeab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.