PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved lumping friction model for liquid pipe flow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Normally, during one-dimensional pipe flow, the friction terms are calculated with the use of a numerical method (for example MOC – method of characteristics) at every computational node along the pipe and at every time step. This procedure tends to increase the computational effort greatly. A considerable increase in computational speed can be archived by calculating the frequency-dependent friction at the end of the pipe only. To avoid possible problems (no damping at closed walls, underestimate damping on high impedance components) the frequency-dependent friction term is calculated from the flow waves. The lumping friction model in this work is based on a modificated Schohl convolution integral solution. In addition, the work examined the impact of using of simplified effective weighting function on the obtained results of numerical simulations. The modified method in conjunction with the use of simplified weighting function allow determination of real-time estimate of the basic parameters representing the fluid flow in complex hydraulic systems, water supply, etc.
Rocznik
Strony
295--305
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology, Department of Mechanical Engineering and Mechatronics, Szczecin, Poland
autor
  • West Pomeranian University of Technology, Department of Mechanical Engineering and Mechatronics, Szczecin, Poland
Bibliografia
  • 1. Adamkowski A., Lewandowski M., 2006, Experimental examination of unsteady friction models for transient pipe flow simulation, Journal of Fluids Engineering, 128, 1351-1363
  • 2. Adamkowski A., Lewandowski M., 2009, A new method for numerical prediction of liquid column separation accompanying hydraulic transients in pipelines, Journal of Fluids Engineering, 131, 7, 071302-1-071302-11
  • 3. Adamkowski A., Lewandowski M., 2012, Investigation of hydraulic transients in a pipeline with column separation, Journal of Hydraulic Engineering, 138, 11, 935-944
  • 4. Brown F.T., 1962, The transient response of fluid lines, Transactions of the ASME, Journal of Basic Engineering, 84, 3, 547-553 5. Colebrook C.F., 1939, Turbulent flow in pipes, with particular reference to the transition region between smooth and rough pipe laws, Journal of the Institution of Civil Engineers, 11, 133-156
  • 6. Goudar C.T., Sonnad J.R., 2008, Comparison of the iterative approximations of the Colebrook- -White equation, Hydrocarbon Processing – Fluid Flow and Rotating Equipment Special Report, August, 79-83
  • 7. Johnston D.N., 2006, Efficient methods for numerical modelling of laminar friction in fluid lines, Journal of Dynamic Systems Measurement and Control – Transactions of the ASME, 128, 4, 829-834
  • 8. Kagawa T., Lee I., Kitagawa A., Takenaka T., 1983, High speed and accurate computing method of frequency-dependent friction in laminar pipe flow for characteristics method, Transactions of the Japan Society of Mechanical Engineers, 49, 447, 2638-2644
  • 9. Schohl G.A., 1993, Improved approximate method for simulating frequency – dependent friction in transient laminar flow, Journal of Fluids Engineering, Transactions of the ASME, 115, 3, 420-424
  • 10. Simpson A.R., Wylie E.B., 1991, Large water-hammer pressures for column separation in pipelines, Journal of Hydraulic Engineering, 117, 10, 1310-1316
  • 11. Trikha A.K., 1975, An efficient method for simulating frequency – dependent friction in transient liquid flow, Journal of Fluids Engineering, Transactions of the ASME, March, 97-105
  • 12. Urbanowicz K., 2012, New approximation of unsteady friction weighting functions, Proceedings of the 11th International Conference on Pressure Surges, Lisbon, Portugal, October 24-26, 477-492
  • 13. Urbanowicz K., Zarzycki Z., 2012, Convolution integral in transient pipe flow, Proceedings of XX Fluid Mechanics Conference KKMP2012, Gliwice, Poland, on CD
  • 14. Vardy A.E., Brown J.M.B., 2003, Transient turbulent friction in smooth pipe flows, Journal of Sound and Vibration, 259, 5, 1011-1036
  • 15. Vardy A.E., Brown J.M.B., 2004, Transient turbulent friction in fully rough pipe flows, Journal of Sound and Vibration, 270, 233-257
  • 16. Vardy A.E., Brown J.M.B., 2010, Evaluation of unsteady wall shear stress by Zielke’s method, Journal of Hydraulic Engineering, 136, 7, 453-456
  • 17. Zarzycki Z., 1997, Hydraulic resistance of unsteady turbulent liquid flow in pipes, Proceedings of 3rd International Conference on Water Pipeline Systems, The Hague, BHR Group, 163-178
  • 18. Zarzycki Z., 2000, On weighting function for wall shear stress during unsteady turbulent pipe flow, Proceedings of 8th International Conference on Pressure Surges, BHR Group, The Hague, 529-543
  • 19. Zielke W., 1968, Frequency-dependent friction in transient pipe flow, Journal of ASME, 90, March, 109-115
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b0df62a-4d8d-48e4-98eb-b388233f7a36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.