PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implementing a polarisation-sensitive sensor in a plug-and-play QKD system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present the results of simplified polarimetric methods for detecting disturbances on a fibre-optic link in a quantum key distribution system. The proposed methods use a polarisation coupler and a single polariser as a polarisation-sensitive detection system. The effectiveness of the disturbance detection was considered in a plug-and-play quantum key distribution system with phase encoding. This paper compares the performance of two simplified methods for determining changes in the state of polarisation in response to three types of disturbances, including touching, bending, and inserting a clip-on coupler. Also, the results of an experiment involving the entire procedure of introducing eavesdropping into a telecommunications fibre-optic cable are presented. The results of the measurements indicate the subsequent steps when attacking a fibre-optic cable. This article shows that a simplified polarisation-sensitive sensor can be implemented into a quantum key distribution system to detect disturbances and eavesdropping attempts, as well as enhance the security of the system.
Rocznik
Strony
art. no. e156667
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
  • Institute of Optoelectronics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Optoelectronics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Institute of Micromechanics and Photonics, Warsaw University of Technology, ul. św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
autor
  • Faculty of Advanced Technologies and Chemistry, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Rivest, R. L., Shamir, A. & Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978). https://doi.org/10.1145/359340.359342
  • [2] Gidney, C. & Ekera, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2019). https://doi.org/10.22331/q-2021-04-15-433
  • [3] Yan, B. et al. Factoring integers with sublinear resources on a superconducting quantum processor. arXiv.2212.12372, 1–32 (2022). https://doi.org/10.48550/arXiv.2212.12372
  • [4] Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019). https://doi.org/10.1038/s41586-019-1666-5
  • [5] Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009). https://doi.org/10.1103/RevModPhys.81.1301
  • [6] Mannalath, V., Mishra, S. & Pathak, A. A comprehensive review of quantum random number generators: Concepts, classification and the origin of randomness. Quantum Inf. Process. 22, 439 (2023). https://doi.org/10.1007/s11128-023-04175-y
  • [7] Dudek, M., Siudem, G., Kwaśnik, G., Żołnowski, W. & Życzkowski, M. T. Optical fibre-based quantum random number generator: Stochastic modelling and measurements. Sci. Rep. 15, 10849 (2025). https://doi.org/10.1038/s41598-025-95414-y
  • [8] Bennett, C. H. & Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014). https://doi.org/10.1016/j.tcs.2014.05.025
  • [9] Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991). https://doi.org/10.1103/PhysRevLett.67.661
  • [10] Ling, A., Peloso, M., Marcikic, I., Lamas-Linares, A. & Kurtsiefer, C. Experimental E91 quantum key distribution. Proc. SPIE 6903, 69030U (2008). https://doi.org/10.1117/12.778556
  • [11] Ahn, B. et al. Implementation of Plug & Play Quantum Key Distribution Protocol. in 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN) 47–49 (2018). https://doi.org/10.1109/ICUFN.2018.8436633
  • [12] Takesue, H., Honjo, T., Tamaki, K. & Tokura, Y. Differential phase-shift quantum key distribution. IEEE Commun. Mag. 47, 102–106 (2009). https://doi.org/10.1109/MCOM.2009.4939284
  • [13] Valivarthi, R., Etcheverry, S., Aldama, J., Zwiehoff, F. & Pruneri, V. Plug-and-play continuous-variable quantum key distribution for metropolitan networks. Opt. Express 28, 14547–14559 (2020). https://doi.org/10.1364/OE.391491
  • [14] Dusek, M., Haderka, O. & Hendrych, M. Generalized beam-splitting attack in quantum cryptography with dim coherent states. Opt. Cummun. 169, 103–108 (1999). https://doi.org/10.1016/S0030-4018(99)00419-8
  • [15] Scarani, V., Acin, A., Ribordy, G. & Gisin, N. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004). https://doi.org/10.1103/PhysRevLett.92.057901
  • [16] Lo, H., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005). https://doi.org/10.1103/PhysRevLett.94.230504
  • [17] Inoue, K., Waks, E. & Yamamoto, Y. Differential phase shift quantum key distribution. Phys. Rev. Lett. 89, 037902 (2002). https://doi.org/10.1103/PhysRevLett.89.037902
  • [18] Stucki, D. et al. Fast and simple one-way quantum key distribution. Appl. Phys. Lett. 87, 194108 (2005). https://doi.org/10.48550/arXiv.quant-ph/0506097
  • [19] Lo, H., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012). https://doi.org/10.1103/PhysRevLett.108.130503
  • [20] Pawlikowska, E. et al. Testing of four-channel Stokes polarimeter performance for intrusion detection in QKD systems. Opto-Electron. Rev. 33, 153182 (2025). https://doi.org/10.24425/opelre.2025.153182
  • [21] Su, Y., Zhou, H., Wang, Y. & Shen, H. A novel polarization demodulation method using polarization beam splitter (PBS) for dynamic pressure sensor. Opt. Fibre Technol. 41, 69–73 (2018). https://doi.org/10.1016/j.yofte.2017.12.015
  • [22] Nicholson, G. & Temple, D. J. Polarization fluctuation measurements on installed single-mode optical fibre cables. IEEE J. Light. Technol. 7, 1197–1200 (1989). https://doi.org/10.1109/50.32382
  • [23] Ding, Y. et al. Polarization variations in installed fibres and their influence on quantum key distribution systems. Opt. Express 25, 27923–27936 (2017). https://doi.org/10.1364/OE.25.027923
  • [24] El Hajj, R., MacDonald, G., Verma., P. & Huck, R. Implementing and testing a fibre-optic polarization-based intrusion detection system. Opt. Eng. 54, 096107 (2015). https://doi.org/10.1117/1.OE.54.9.096107
  • [25] MacDonald, G. G. Detecting eavesdropping activity in fibre optic networks. (The University of Oklahoma, 2012).
  • [26] Goldstein, D. Polarized Light, Revised and Expanded, 2nd Edition. (CRC Press, 2003). https://doi.org/10.1201/9780203911587
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b078d2d-b3bc-4048-8311-5a2e4c3c2a6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.