PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of capillary pumping on the course of cleaning porous materials containing liquid contaminants using supercritical fluids – A pore network study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The role of capillary pumping on the course of cleaning porous materials containing liquid contaminants using supercritical fluids was investigated numerically. As a specific process to be modelled, cleaning of porous membranes, contaminated with soybean oil, using supercritical carbon dioxide as the cleaning fluid (solvent) was considered. A 3D pore-network model, developed as an extension of a 2D drying model, was used for performing pore scale simulations. The influence of various process parameters, including the coordination number of the pore network, the computational domain size, and the external flow mass transfer resistance, on the strength of the capillary pumping effect was investigated. The capillary pumping effect increases with increasing domain size and decreasing external flow mass transfer resistance. For low coordination numbers of the pore network, the capillary pumping effect is not noticeable at macro scale, while for high coordination numbers, the opposite trend is observed – capillary pumping may influence the process at macro scale. In the investigated system, the coordination number of the pore network seems to be low, as no capillary pumping effects were observed at macro scale during experimental investigation and macro-scale modelling of the membrane cleaning process.
Rocznik
Strony
349--–368
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland
  • ETH Zurich, Institute of Fluid Dynamics, Sonneggstrasse 3, 8092 Zurich, Switzerland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland
  • ETH Zurich, Institute of Fluid Dynamics, Sonneggstrasse 3, 8092 Zurich, Switzerland
Bibliografia
  • 1. Al-Dhahli A.R., Geiger S., van Dijke M.I., 2013. Three-phase pore-network modeling for reservoirs with arbitrary wettability. SPE J., 18, 285–295. DOI: 10.2118/147991-PA.
  • 2. Anastas P.T.,Warner J.C. 1998. Principles of green chemistry, In: Anastas P.T.,Warner J.C. (Eds.). Green Chemistry: Theory and Practice. Oxford University Press, Oxford, 29–56.
  • 3. Anastas P. T., Zimmerman J.B., 2003. Peer reviewed: Design through the 12 principles of green engineering. Environ. Sci. Technol., 37, 94A–101A. DOI: 10.1021/es032373g.
  • 4. Attari Moghaddam A., Kharaghani A., Tsotsas E., Prat M., 2017. Kinematics in a slowly drying porous medium: Reconciliation of pore network simulations and continuum modeling. Phys. Fluids, 29, 022102. DOI: 10.1063/1.4975985.
  • 5. Berghmans S., Berghmans H., Meijer H., 1996. Spinning of hollowporous fibres via the TIPS mechanism. J. Membr. Sci., 116, 171–189. DOI: 10.1016/0376-7388(96)00037-3.
  • 6. Cocero M., Alonso E., Lucas S., 2000. Pilot plant for soil remediation with supercritical CO2 under quasi-isobaric conditions. Ind. Eng. Chem. Res., 39, 4597–4602. DOI: 10.1021/ie000183y.
  • 7. Horgue P., Soulaine C., Franc J., Guibert R., Debenest G., 2015. An open-source toolbox for multiphase flow in porous media. Comput. Phys. Commun., 187, 217–226. DOI: 10.1016/j.cpc.2014.10.005.
  • 8. Khayrat K., Jenny P., 2016. Subphase approach to model hysteretic two-phase flow in porous media. Transp. Porous Med., 111, 1–25. DOI: 10.1007/s11242-015-0578-6.
  • 9. Khayrat K., Jenny, P., 2017. A multi-scale network method for two-phase flow in porous media. J. Comput. Phys., 342, 194–210. DOI: 10.1016/j.jcp.2017.04.023.
  • 10. Krzysztoforski J., Henczka M., 2018. Porous membrane cleaning using supercritical carbon dioxide. Part 1: Experimental investigation and analysis of transport properties. The J. Supercrit. Fluids, 136, 12–20. DOI: 10.1016/j.supflu.2018.01.027.
  • 11. Krzysztoforski J., Jenny P., Henczka, M., 2018. Porous membrane cleaning using supercritical carbon dioxide. Part 2: Development of mathematical model and CFD simulations. J. Supercrit. Fluids, 136, 1–11. DOI: 10.1016/j.supflu. 2018.01.028.
  • 12. Krzysztoforski J., Krasinski A., Henczka M., PiatkiewiczW., 2013. Enhancement of supercritical fluid extraction in membrane cleaning process by addition of organic solvents. Chem. Process Eng., 34, 403–414. DOI: 10.2478/cpe-2013-0033.
  • 13. Liu H., Zhu Z., Patrick W., Liu J., Lei H., Zhang L., 2020. Pore-scale numerical simulation of supercritical CO2 migration in porous and fractured media saturated with water. Adv. Geo-Energy Res., 4, 419–434. DOI: 10.46690/ager.2020.04.07.
  • 14. Michałek K., Krzysztoforski J., Henczka M., da Ponte M.N., Bogel-Łukasik E., 2015. Cleaning of microfiltration membranes from industrial contaminants using “greener” alternatives in a continuous mode. J. Supercrit. Fluids, 102, 115–122. DOI: 10.1016/j.supflu.2015.04.011.
  • 15. Ozbakır Y., Erkey C., 2015. Experimental and theoretical investigation of supercritical drying of silica alcogels. J. Supercrit. Fluids, 98, 153–166. DOI: 10.1016/j.supflu.2014.12.001.
  • 16. Rabbani A., Babaei M., Javadpour F., 2020. A triple pore network model (T-PNM) for gas flow simulation in fractured, micro-porous and meso-porous media. Transp. Porous Med., 132, 707–740. DOI: 10.1007/s11242-020-01409-w.
  • 17. Tarabasz K., Krzysztoforski J., Szwast M., Henczka M., 2016. Investigation of the effect of treatment with supercritical carbon dioxide on structure and properties of polypropylene microfiltration membranes. Mater. Lett., 163, 54–57. DOI: 10.1016/j.matlet.2015.10.010.
  • 18. Taylor M.K., Young T.M., Butzke C.E., Ebeler S.E., 2000. Supercritical fluid extraction of 2,4,6-trichloroanisole from cork stoppers. J. Agric. Food. Chem., 48, 2208–2211. DOI: 10.1021/jf991045q.
  • 19. Tsimpanogiannis I.N., Yortsos Y.C., Poulou S., Kanellopoulos N., Stubos A.K., 1999. Scaling theory of drying in porous media. Phys. Rev. E, 59, 4353. DOI: 10.1103/PhysRevE.59.4353.
  • 20. Wang S., Feng Q., Javadpour F., Zha M., Cui R., 2020. Multiscale modeling of gas transport in shale matrix: an integrated study of molecular dynamics and rigid-pore-network model. SPE J., 25, 1416–1442. DOI: 10.2118/187286-PA.
  • 21. Xu R., Luo S., Jiang P., 2011. Pore scale numerical simulation of supercritical CO2 injecting into porous media containing water. Energy Procedia, 4, 4418–4424. DOI: 10.1016/j.egypro.2011.02.395.
  • 22. Yiotis A.G., Stubos A., Boudouvis A., Yortsos Y.C., 2001. A 2-D pore-network model of the drying of singlecomponent liquids in porous media. Adv. Water Resour., 24, 439–460. DOI: 10.1016/S0309-1708(00)00066-X.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b0421dc-1eeb-4ecb-b78a-b51ea75ce004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.