PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Off-design operation of an 900 MW-class power plant with utilization of low temperature heat of flue gases

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the off-design operation of a 900 MW-class steam turbine cycle upgraded with utilization of lowtemperature waste heat taken from boiler flue gas. The low-temperature heat contributes to increasing the efficiency of power plants without introducing many complex changes to the whole system. The base for investigations was a power unit operating in off-design conditions and supplied with steam from a BB–2400 boiler. Modifications to the model were made using commercially available software and by applying the Stodola equation and the SCC method. Calculations for off-design conditions show that, after making some modifications to the system, both heat and electricity generation could be increased through the addition of a low-temperature heat exchanger.
Rocznik
Strony
221--227
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00–665 Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00–665 Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00–665 Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00–665 Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00–665 Warsaw, Poland
Bibliografia
  • [1] W. Budzianowski, Modelling of co2 content in the atmosphere until 2300: Influence of energy intensity of gross domestic product and carbon intensity of energy, International Journal of Global Warming 5 (1) (2013) 1–17.
  • [2] M. Amirinejad, N. Tavajohi-Hasankiadeh, S. Madaeni, M. Navarra, E. Rafiee, B. Scrosati, Adaptive neuro-fuzzy inference system and artificial neural network modeling of proton exchange membrane fuel cells based on nanocomposite and recast nafion membranes, International Journal of Energy Research 37 (4) (2013) 347–357.
  • [3] D. Bakalis, A. Stamatis, Incorporating available micro gas turbines and fuel cell: Matching considerations and performance evaluation, Applied Energy 103 (2013) 607–617.
  • [4] J. Ding, X. Li, J. Cao, L. Sheng, L. Yin, X. Xu, New sensor for gases dissolved in transformer oil based on solid oxide fuel cell, Sensors and Actuators, B: Chemical 202 (2014) 232–239.
  • [5] D. Grondin, J. Deseure, P. Ozil, J.-P. Chabriat, B. Grondin-Perez, A. Brisse, Solid oxide electrolysis cell 3d simulation using artificial neural network for cathodic process description, Chemical Engineering Research and Design 91 (1) (2013) 134–140.
  • [6] C. Guerra, A. Lanzini, P. Leone, M. Santarelli, D. Beretta, Experimental study of dry reforming of biogas in a tubular anodesupported solid oxide fuel cell, International Journal of Hydrogen Energy 38 (25) (2013) 10559–10566.
  • [7] S. Hajimolana, S. Tonekabonimoghadam, M. Hussain, M. Chakrabarti, N. Jayakumar, M. Hashim, Thermal stress management of a solid oxide fuel cell using neural network predictive control, Energy 62 (2013) 320–329.
  • [8] E. Hosseinzadeh, M. Rokni, M. Jabbari, H. Mortensen, Numerical analysis of transport phenomena for designing of ejector in pem forklift system, International Journal of Hydrogen Energy 39 (12) (2014) 6664–6674.
  • [9] E. Jannelli, M. Minutillo, A. Perna, Analyzing microcogeneration systems based on lt-pemfc and ht-pemfc by energy balances, Applied Energy 108 (2013) 82–91.
  • [10] J. Kupecki, J. Jewulski, K. Motylinski, Sofc (solid oxide fuel cell) µ-chp (combined heat and power) system with oxycombustion based on oxygen separation membranes, 2013.
  • [11] D. Marra, M. Sorrentino, C. Pianese, B. Iwanschitz, A neural network estimator of solid oxide fuel cell performance for on field diagnostics and prognostics applications, Journal of Power Sources 241 (2013) 320–329.
  • [12] D. McLarty, J. Brouwer, S. Samuelsen, Hybrid fuel cell gas turbine system design and optimization, Journal of Fuel Cell Science and Technology 10 (4).
  • [13] J. Qian, Z. Tao, J. Xiao, G. Jiang, W. Liu, Performance improvement of ceria-based solid oxide fuel cells with yttria-stabilized zirconia as an electronic blocking layer by pulsed laser deposition, International Journal of Hydrogen Energy 38 (5) (2013) 2407–2412.
  • [14] O. Razbani, M. Assadi, Artificial neural network model of a short stack solid oxide fuel cell based on experimental data, Journal of Power Sources 246 (2014) 581–586.
  • [15] S. Sieniutycz, J. Jezowski, Energy Optimization in Process Systems and Fuel Cells, 2013.
  • [16] J. Stempien, Q. Sun, S. Chan, Performance of power generation extension system based on solid-oxide electrolyzer cells under various design conditions, Energy 55 (2013) 647–657.
  • [17] S.-B.Wang, C.-F.Wu, S.-F. Liu, P. Yuan, Performance optimization and selection of operating parameters for a solid oxide fuel cell stack, Journal of Fuel Cell Science and Technology 10 (5).
  • [18] W. Wang, H. Li, X.-F. Wang, Analyses of part-load control modes and their performance of a sofc/mgt hybrid power system, Dalian Ligong Daxue Xuebao/Journal of Dalian University of Technology 53 (5) (2013) 653–658.
  • [19] H. Xu, Z. Dang, B.-F. Bai, Electrochemical performance study of solid oxide fuel cell using lattice boltzmann method, Energy 67 (2014) 575–583.
  • [20] A. Zamaniyan, F. Joda, A. Behroozsarand, H. Ebrahimi, Application of artificial neural networks (ann) for modeling of industrial hydrogen plant, International Journal of Hydrogen Energy 38 (15) (2013) 6289–6297.
  • [21] J. Milewski, K. Badyda, Z. Misztal, M. Wołowicz, Combined heat and power unit based on polymeric electrolyte membrane fuel cell in a hotel application, Rynek Energii 90 (5) (2010) 118–123, Indexed by Journal Citation Reports with Impact Factor of 0.63, Cited 1 time.
  • [22] R. Chacartegui, B. Monje, D. Sánchez, J. Becerra, S. Campanari, Molten carbonate fuel cell: Towards negative emissions in wastewater treatment chp plants, International Journal of Greenhouse Gas Control 19 (2013) 453–461.
  • [23] M. Ramandi, I. Dincer, P. Berg, A transient analysis of three-dimensional heat and mass transfer in a molten carbonate fuel cell at start-up, International Journal of Hydrogen Energy 39 (15) (2014) 8034–8047.
  • [24] D. Sanchez, B. Monje, R. Chacartegui, S. Campanari, Potential of molten carbonate fuel cells to enhance the performance of chp plants in sewage treatment facilities, International Journal of Hydrogen Energy 38 (1) (2013) 394–405.
  • [25] J.-H. Wee, Carbon dioxide emission reduction using molten carbonate fuel cell systems, Renewable and Sustainable Energy Reviews 32 (2014) 178–191.
  • [26] T. Bartela, A. Skorek-Osikowska, J. Kotowicz, Economic analysis of a supercritical coal-fired chp plant integrated with an absorption carbon capture installation, Energy 64 (2014) 513–523.
  • [27] J. Chawla, Waste heat recovery from flue gases with substantial dust load, Chemical Engineering and Processing 38 (1999) 365–371.
  • [28] J. Kotowicz, Ł. Bartela, The influence of economic parameters on the optimal values of the design variables of a combined cycle plant, Energy 35 (2) (2010) 911–919.
  • [29] C. Butcher, B. Reddy, Second law analysis of a waste heat recovery based power generation system, International Journal of Heat and Mass Transfer 50 (11) (2007) 2355–2363.
  • [30] J.-Y. San, Second-law performance of heat exchangers for waste heat recovery, Energy 35 (5) (2010) 1936–1945.
  • [31] G. Descombes, S. Boudigues, Modelling of waste heat recovery for combined heat and power applications, Applied Thermal Engineering 29 (13) (2009) 2610–2616.
  • [32] S. M. Lai, H. Wu, C. W. Hui, B. Hua, G. Zhang, Flexible heat exchanger network design for low-temperature heat utilization in oil refinery, Asia-Pacific Journal of Chemical Engineering 6 (5) (2011) 713–733.
  • [33] S.Wu, X. Yuan, Y. Li, L. Peng, Exergy transfer characteristics on low temperature heat exchangers, International Journal of Modern Physics B 21 (18n19) (2007) 3503–3505.
  • [34] L. Peng, Y.-R. Li, S.-Y. Wu, B. Lan, The analysis of exergy efficiency in the low temperature heat exchanger, International Journal of Modern Physics B 21 (18n19) (2007) 3497–3499.
  • [35] S. Wu, Y. Li, D. Zeng, Exergo-economic performance evaluation on low temperature heat exchanger, International Journal of Modern Physics B 19 (01n03) (2005) 517–519.
  • [36] F. Starfelt, E. Thorin, E. Dotzauer, J. Yan, Performance evaluation of adding ethanol production into an existing combined heat and power plant, Bioresource technology 101 (2) (2010) 613–618.
  • [37] http://www.ge-mcs.com/en/bently-nevada-software/320- performance/1831-siweb-pl655.html.
  • [38] K. Badyda, J. Milewski, M. Wołowicz, Model of 800 MW condensation power plant unit using GateCycletm aplication, in: 50 Sympozjon Modelowanie w Mechanice, 2011.
  • [39] R. Spencer, K. Cotton, C. Cannon, A method for predicting the performance of steam turbine-generators....: 16,500 kw and larger, Journal of Engineering for Gas Turbines and Power 85 (4) (1963) 249–298.
  • [40] M.Wołowicz, J. Milewski, K. Futyma,W. Bujalski, Boosting the efficiency of an 800 mw-class power plant through utilization of low temperature heat of flue gases, in: Applied Mechanics and Materials, Vol. 483, Trans Tech Publ, 2014, pp. 315–321.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6afb0733-215c-4054-8f11-ebfa78c07b08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.