Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
3D printing is a modern technology that enables the creation of three-dimensional objects from various thermoplastic copolymers. One of the challenges of 3D printing is providing adequate support for complex shapes that may fall apart or deform during the printing process. Traditionally, support materials are used for this purpose, which are difficult to remove after printing and difficult to dispose of. This work focuses on the analysis of the solubility of the BVOH support filament in solutions with different pH values. In particular, the influence of pH on the dissolution time of the BVOH (Butenediol Vinyl Alcohol Co-polymer) copolymer in aqueous solutions and its influence on changes in the PETG base material from which the samples were printed were examined. It was found that the BVOH material combined with PETG is easily soluble in an alkaline environment.
Czasopismo
Rocznik
Tom
Strony
201--207
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
- Faculty of Mathematics and Information Technology, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
autor
- Faculty of Mathematics and Information Technology, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
autor
- Faculty of Mathematics and Information Technology, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
autor
- Lublin University of Technology, ul. Nadbystrzycka 38B/406, 20-618 Lublin, Poland
autor
- Faculty of Mathematics and Information Technology, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
Bibliografia
- 1. Ambade, Mr Vishwjeet V., Mr Vivek Padole and MBB. 2023. Effect of infill density, infill pattern and Extrusion temperature on Mechanical Properties of Part produced by 3D printing FDM Technology Using ABS, PLA and PETG Filament: A Critical Review.
- 2. Amrita, Manoj A., Panda R.C. 2022. Biodegradable Filament for Three-Dimensional Printing Process: A Review. Engineered Science, 18, 11–19. DOI: 10.30919/es8d616.
- 3. Büker O., Stolt K., Kroner C., Benkova M., Pavlas J., Seypka V. 2021. Investigations on the Influence of Total Water Hardness and pH Value on the Measurement Accuracy of Domestic Cold Water Meters. Water 13, 2701. DOI: 10.3390/w13192701.
- 4. Cisneros-López E.O., Pal A.K., Rodriguez A.U., Wu F., Misra M., Mielewski D.F., Kiziltas A., Mohanty A.K. 2020. Recycled poly(lactic acid)–based 3D printed sustainable biocomposites: a comparative study with injection molding. Materials Today Sustainability, 7–8, #100027. DOI: 10.1016/j.mtsust.2019.100027.
- 5. Grassi M., Lamberti G., Cascone S., Grassi G. 2011. Mathematical modeling of simultaneous drug release and in vivo absorption. International Journal of Pharmaceutics, 418, 130–141. DOI: 10.1016/j.ijpharm.2010.12.044.
- 6. Hansen S. 2013. Autodesk Inventor 2014: A Tutorial Introduction.
- 7. Ikebata K., Onishi T., Furui K., Mandai S., Hirano Y., Kanamori Y., Psihogios B., Taniguchi R. 2021. Design and Analysis of Improved Swelling and Degradable Diverting Agent for Multistage Hydraulic Fracturing. SPE/AAPG/SEG Asia Pacific Unconventional Resources Technology Conference, Asia Pacific URTeC 2021, 1429–1453. DOI: 10.15530/AP-URTEC-2021-208338.
- 8. Jung B.N., Kang D.H., Shim J.K., Hwang S.W. 2019. Physical and mechanical properties of plasticized butenediol vinyl alcohol copolymer/thermoplastic starch blend. Journal of Vinyl and Additive Technology, 25, 109–116. DOI: 10.1002/vnl.21621.
- 9. Latko-Durałek P., Dydek K., Boczkowska A. 2019. Thermal, Rheological and Mechanical Properties of PETG/rPETG Blends. Journal of Polymers and the Environment, 27, 2600–2606. DOI: 10.1007/s10924-019-01544-6.
- 10. Malinowski R., Łubkowski D. 2012. Zmiany wybranych właściwości polilaktydu zachodzące pod wpływem jego trzykrotnego przetwarzania. Inżynieria i Aparatura Chemiczna, 1, 10–12.
- 11. OECD. 2022. Global Plastics Outlook - Policy Scenarios to 2060. Global Plastics Outlook:61–131.
- 12. Paśnikowska-Łukaszuk M., Korulczyk K., Kapłon K., Urzędowski A., Wlazło-Ćwiklińska M. 2022. Time Distribution Analysis of 3D Prints with the Use of a Filament and Masked Stereolithography Resin 3D Printer. Advances in Science and Technology Research Journal, 16, 242–249. DOI: 10.12913/22998624/154926.
- 13. Paśnikowska-Łukaszuk M., Urzędowski A., Korulczyk K. 2020. Wykorzystanie technologii modelowania 3D w procesie twórczym materiałów pomocnych w stymulacji rozwoju dziecka. Wybrane technologie informatyczne w aspektach zrównoważonego rozwoju, 96–103.
- 14. von Petersdorff-Campen K., Hauswirth Y., Carpenter J., Hagmann A., Boës S., Daners M.S., Penner D., Meboldt M. 2018. 3D printing of functional assemblies with integrated polymer-bonded magnets demonstrated with a prototype of a rotary blood pump. Applied Sciences (Switzerland) 8. DOI: 10.3390/app8081275.
- 15. Pinto V.C., Ramos T., Alves S., Xavier J., Tavares P., Moreira P.M.G.P., Guedes R.M. 2015. Comparative Failure Analysis of PLA, PLA/GNP and PLA/CNT-COOH Biodegradable Nanocomposites thin Films. Procedia Engineering, 114, 635–642. DOI: 10.1016/j.proeng.2015.08.004.
- 16. Polidar M., Metzsch-Zilligen E., Pfaendner R. 2022. Controlled and Accelerated Hydrolysis of Polylactide (PLA) through Pentaerythritol Phosphites with Acid Scavengers. Polymers, 14, 4237. DOI: 10.3390/polym14194237.
- 17. Rahman Z.A.B.A. 2016. 3D printing in dentistry. Oral Health and Dental Management 15. DOI: 10.4172/2247-2452.c1.032.
- 18. Reddy S., Raju T. 2018. Design and Development of mini plastic shredder machine. IOP Conference Series: Materials Science and Engineering, 455, 012119. DOI: 10.1088/1757-899X/455/1/012119.
- 19. Ruśkowski P., Gadomska-Gajadhur A. 2017. Polilaktyd w zastosowaniach medycznych. Tworzywa Sztuczne w Przemyśle, 38, 32–35.
- 20. Staniszewski M., Zaburko J., Babko R., Szulżyk-Cieplak J., Widomski M.K., Szeląg B., Łagód G. 2022. Evaluation of the efficiency of the mixing system of the laboratory SBR-type reactor. Journal of Physics: Conference Series 2412:012007. DOI: 10.1088/1742-6596/2412/1/012007.
- 21. Szulżyk-Cieplak J., Duda A., Sidor B. 2014. 3D Printers – New Possibilities in Education. Advances in Science and Technology Research Journal, 8, 96–101. DOI: 10.12913/22998624/575.
- 22. Tay Y.W.D., Li M.Y., Tan M.J. 2019. Effect of printing parameters in 3D concrete printing: Printing region and support structures. Journal of Materials Processing Technology, 271, 261–270. DOI: 10.1016/j.jmatprotec.2019.04.007.
- 23. Tomczyk K., Raczkiewicz A., Paśnikowska-Łukaszuk M. 2023. analysis of the quality of printed pla samples using various 3d printers and print preparation programs. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 13(3), 43-46. DOI: https://doi.org/10.35784/iapgos.4252.
- 24. Wen Y., Chao C., Che Q.T., Kim H.W., Park H.J. 2023. Development of plant-based meat analogs using 3D printing: Status and opportunities. Trends in Food Science and Technology, 132, 76–92. DOI: 10.1016/j.tifs.2022.12.010.
- 25. Xing J., Wang R., Sun S., Shen Y., Liang B., Xu Z. 2023. Morphology and Properties of Polylactic Acid Composites with Butenediol Vinyl Alcohol Copolymer Formed by Melt Blending. Molecules, 28, 3627. DOI: 10.3390/molecules28083627.
- 26. Yu D., Yang Q., Zhou X., Guo H., Li D., Li H., Deng B., Liu Q. 2023. Structure and properties of polylactic acid/butenediol vinyl alcohol copolymer blend fibers. International Journal of Biological Macromolecules, 232, #123396. DOI: 10.1016/j.ijbiomac.2023.123396.
- 27. Zaburko J., Urzȩdowski A., Szulżyk-Cieplak J.., Trník A, Suchorab Z., Łagód G. 2021. Analysis of thermal operating conditions of 3D printers with printing chamber. In: AIP Conference Proceedings. 020020. DOI: 10.1063/5.0070165.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6af57126-2262-4076-a336-4b0c64310fe9