PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of Zn2+ from solutions on manganese oxide obtained via ozone precipitation reaction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Synthesis via ozone precipitation reaction was used to obtain manganese dioxide (OMD) and it was probed as an adsorbent for zinc ions. Adsorption was followed along shaking time and increasing ratio [NO3 –] / [Zn2+], and isotherms were obtained at different pH values and in the presence of several anions (chloride, nitrate, sulphate, and acetate). It was found that adsorption equilibrium is fast and follows the pseudo-second order model (qe = 34 ±1 mg/g and K = 0.07 ±0.01 g/mg h). Isotherms were fitted to Langmuir, Freundlich, and Langmuir-Freundlich models, and the best fitting was found with the last one. The process is dependent on pH and the efficiency increases from pH 1 to 4. The ratio [NO3 –] / [Zn2+] up to 3 does not seem to change the behaviour of the process. Regarding the anions, the efficiency of Zn(II) adsorption occurs according to: acetate > nitrate and sulphate > chloride. Manganese oxide obtained via ozonization is an excellent adsorbent for zinc ions.
Rocznik
Strony
46--50
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, C. P. 76703, Querétaro, México
  • Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, C. P. 76703, Querétaro, México
  • Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, C. P. 76703, Querétaro, México
  • Departamento de Química, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027. C. P. 11801, Distrito Federal, México
  • Departamento de Química, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027. C. P. 11801, Distrito Federal, México
Bibliografia
  • 1. Fu, F. & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 92, 407–418. DOI: 10.1016/j.jenvman.2010.11.011.
  • 2. Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L. & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 211–212, 317–331. DOI: 10.1016/j.jhazmat.2011.10.016.
  • 3. Barakat, M.A. (2011). New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4, 361–377. DOI: 10.1016/j.arabjc.2010.07.019.
  • 4. Khan, T.A., Singh, V. & Ali, I. (2009). Sorption of Cd(II), Pb(II), and Cr(VI) metal ions from wastewater using bottom flyash as a low cost sorbent. J. Environ. Prot. Sci. 3, 124–132. http://aes.asia.edu.tw/Issues/JEPS2009/KhanTA2009a.pdf
  • 5. Ali, I., Asim, M. & Khan, T.A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 113, 170–183. DOI: 10.1016/j.jenvman.2012.08.028.
  • 6. Khan, T.A., Nazir, M., Ali, I. & Kumar, A. (2013). Removal of chromium(VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent. Arab. J. Chem. (In press). DOI: 10.1016/j.arabjc.2013.08.019.
  • 7. Khan, T.A., Chaudhry, S.A. & Ali, I. (2015). Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution, J. Mol. Liq. 202, 165–175. DOI: 10.1016/j.molliq.2014.12.021.
  • 8. Khan, T.A., Dahiya, S. & Ali, I. (2012). Use of kaolinite as adsorbent: Equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution, Appl. Clay Sci. 69, 58–66. DOI: 10.1016/j.clay.2012.09.001.
  • 9. World Health Organization (WHO). (2011). Guidelines for drinking water quality (4th Ed.) 433–434. ISBN: 978 92 4154815 1.
  • 10. Bhattacharya, A.K., Mandal, S.N. & Das, S.K. (2006). Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chem. Eng. J. 123, 43–51. DOI: 10.1016/j. cej.2006.06.012.
  • 11. Carrott, P.J.M., Ribeiro-Carrot, M.M.L., Nabais, J.M.V. & Prates-Ramalho, J.P. (1997). Influence of surface ionization on the adsorption of aqueous zinc species by activated carbons. Carbon. 35, 403–410. DOI: 10.1016/S0008-6223(97)89611-X.
  • 12. Silber, A., Bar-Yosef, B., Suryano, S. & Levkovitch, I. (2012). Zinc adsorption by perlite: Effects of pH, ionic strength, temperature, and pre-use as growth substrate. Geoderma 170, 159–167. DOI: 10.1016/j.geoderma.2011.11.028.
  • 13. Kanungo, S.B., Tripathy, S.S., Mishra, S.K. & Sahoo, B. (2004). Adsorption of Co2+, Ni2+, Cu2+, and Zn2+ onto amorphous hydrous manganese dioxide from simple (1-1) electrolyte solutions. J. Colloid Interf. Sci. 269(1), 11–21. DOI: 10.1016/j.jcis.2003.07.002.
  • 14. Tonkin, J.W., Balistrieri, L.S. & Murray, J.W. (2004). Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model. Appl. Geochem. 19, 29–53. DOI: 10.1016/S0883-2927(03)00115-X.
  • 15. Pan, G., Qin, Y., Li, X., Hu, T., Wu, Z. & Xie, Y. (2004). EXAFS studies on adsorption-desorption reversibility at manganese oxides-water interfaces. I. Irreversible adsorption of zinc onto manganite (γ-MnOOH). J. Colloid Interf. Sci. 271, 28–34. DOI: 10.1016/j.jcis.2003.11.028.
  • 16. Della-Puppa, L., Komárek, M., Bordas, F., Bollinger, J.C. & Joussein, E. (2013). Adsorption of copper, cadmium, lead and zinc onto a synthetic manganese oxide. J. Colloid Interf. Sci. 399, 99–106. DOI: 10.1016/j.jcis.2013.02.029.
  • 17. Caliskan, N., Kul, A.R., Alkan, S., Sogut, E.G. & Alacabey, I. (2011). Adsorption of Zinc(II) on diatomite and manganeseoxide-modified diatomite: A kinetic and equilibrium study. J. Hazard. Mater. 193, 27–36. DOI: 10.1016/j.jhazmat.2011.06.058.
  • 18. Chen, H., Chu, P.K., He, J., Hu, T. & Yang, M. (2011). Porous magnetic manganese oxide nanostructures: Synthesis and their application in water treatment. J. Colloid Interf. Sci. 359, 68–74. DOI: 10.1016/j.jcis.2011.03.089.
  • 19. Bastami, T.R. & Entezari, M.H. (2012). Synthesis of manganese oxide nanocrystal by ultrasonic bath: Effect of external magnetic field. Ultrason. Sonochem. 19, 830–840. DOI: 10.1016/j.ultsonch.2011.11.019.
  • 20. Sun, M., Lan, B., Yu, L., Ye, F., Song, W., He, J., Diao, G. & Zheng, Y. (2012). Manganese oxides with different crystalline structures: Facile hydrothermal synthesis and catalytic activities. Mater. Lett. 86, 18–20. DOI: 10.1016/j.matlet.2012.07.011
  • 21. Lu, B., Chen, S. & Kawamoto, K. (2012). Direct hydrothermal synthesis of nanosized mesoporous ramsdellite manganese oxide with high surface area. Mater. Res. Bull. 47, 3619–3624. DOI: 10.1016/j.materresbull.2012.06.052.
  • 22. Kijima, N., Yasuda, H., Sato, T. & Yoshimura, Y. (2001). Preparation and characterization of open tunnel oxide α-MnO2 precipitated by ozone oxidation. J. Solid State Chem. 159, 94–102. DOI: 10.1006/jssc.2001.9136.
  • 23. Contreras R. & Lapidus G.T. (1999). Combined water and the ion exchange characteristics of manganese dioxide produced by ozonation. J. Colloid Interf. Sci. 213, 251–267. DOI: 10.1006/jcis.1999.6114.
  • 24. Ho Y.S. & McKay G. (1999). Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465.
  • 25. Ho Y.S. (2006). Review of second-order models for adsorption systems. J. Hazard. Mater. B136, 681–689. DOI: 10.1016/j.jhazmat.2005.12.043.
  • 26. Khan T.A., Khan, E.A. & Shahjahan. (2015). Removal of basic dyes from aqueous solution by adsorption onto binary iron-manganese oxide coated kaolinite: Non-linear isotherm and kinetics modeling. Appl. Clay Sci. 107, 70–77. DOI: 10.1016/j.clay.2015.01.005.
  • 27. Tang, X., Li, Z. & Chen, Y. (2009). Adsorption behaviour of Zn (II) on calcinated Chinese loess. J. Hazard. Mater. 161(2), 824–834. DOI: 10.1016/j.hazmat.2008.04.059.
  • 28. Puigdomenech, I. (2010). Make Equilibrium Diagrams Using Sophisticated Algorithms (MEDUSA), Royal Institute of Technology, Inorganic Chemistry. 10644 stockolm Sweden. ignasi@inorg.kth.se
  • 29. Su, Q., Pan, B., Wan, S., Zhang, W. & Lv, L. (2010). Use of hydrous manganese dioxide as potential sorbent for selective removal of lead cadmium and zinc ions from water. J. Colloid Interf. Sci. 349(2), 607–612. DOI: 10.1016/j.jcis.2010.05.052.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6af410f5-8310-425a-b2ad-1dad193038c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.