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ABSTRACT 

The energy, current density and momentum probability densities of superconductors were 

studied from London, Ginzburg-Landau and BSC theories by treating cooper pair as a particle moving 

in a magnetic field through analytical and numerical techniques. The London and GL solution were 

exactly the same at the classical limit for NbN. Considering a Cooper pair as a complete classical 

particle, the momentum probability density was derived by using the Maxwell velocity distribution 

and the quantum mechanical momentum probability density was derived by using the radial wave 

function of the cooper pairs for Zn. The quantum mechanical and classical momentum probability 

densities overlap at zero momentum.   
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1.  INTRODUCTION 

 

The discovery that the electrical resistance of various metals disappeared below a 

critical temperature Tc by Onnes [1] in 1911 led to the finding of perfect diamagnetism in 

superconductors by Meissner and Ochsenfeld in 1933 [2]. A simple phenomenological theory 

for the electrodynamics properties of superconducting phenomena, that is the vanishing static 

electrical resistivity and an expulsion of the magnetic field from the interior was proposed by 

London brothers [3], relating current to electromagnetic fields in and around 

a superconductor. In Ginzburg-Landau theory [4], a mathematical theory proposed in 

predicting that free energy of a superconductor near the superconducting transition, expressed 

in terms of a complex order parameter field by minimizing the free energy with respect to 

fluctuations in the order parameter and the vector potential, the Ginzburg–Landau equations 

were obtained by predicting two new characteristic lengths, coherence length and penetration 

depth.  

They observed the existence of two types of superconductors type I and type II, 

depending on the energy of the interface between the normal and superconducting states. 

Although coherent states can be defined for fermions as well as bosons, as single fermion 

coherent states are not directly useful in the theory of superconductivity they must be defined 

for fermion pairs. The origin of electron pairing during a superconducting phase was studied 

http://en.wikipedia.org/wiki/Electromagnetic_fields
http://en.wikipedia.org/wiki/Superconductor
http://en.wikipedia.org/wiki/Thermodynamic_free_energy
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Order_parameter
http://en.wikipedia.org/wiki/Superconducting_coherence_length
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by Cooper [5] calculating the bound states of electrons having a lower energy than the Fermi 

energy subject to a small attractive force in a metal.  In conventional superconductors, this 

attraction is due to exchange of virtual phonons which does not confirm to the boson 

communication rule. A cooper pair which is quite massive by molecular standards has 

orthogonal and correlate wave functions. In 1957 Bardeen Cooper and Schrieffer described 

superconductivity as a microscopic effect caused by a condensation of Cooper pairs into 

a boson-like state in BCS theory of superconductivity [6]. BCS state and the Ginzburg-

Landau theory provides a direct connection to the order parameter of the coherent states of the 

electron pairs [7].  

In the present paper, the superconductors were studied by obtaining the equations from 

the energy basis, current density basis and the momentum probability density basis of the 

cooper pairs. Classically, cooper pairs were assumed to behave like a real gas, and the 

Maxwell-velocity distribution was used to obtain the momentum probability density. The 

quantum mechanical momentum probability density was obtained by using the Hamiltonian 

of the cooper pairs. Graphical interpretations of the analytical and numerical solutions for the 

current density states  of NbN and momentum probability densities of Zn are presented.  

 

 

2.  CURENT DENSITY IN LONDON THEORY 

 

A superconductor, a material that losses all its 

resistivity, is a perfect conductor, that is to say, it is 

a material with infinite conductivity. As the current 

is finite, from Ohms law, the electric field will be 

zero and by Maxwell equations, the magnetic 

induction B will be a constant in time indicating 

that superconducting state is not an equilibrium 

state but a metastable state. Below a certain critical 

temperature, 1/2( )cT m , which changes only when 

the mass of the ion in the lattice is changed while 

the rest remains exactly the same, a phase transition occurs to the electrons that are allowed to 

travel through the space formed by the regular arrangement of ions. In this new phase, called 

the superconducting state, they arrange themselves into Cooper pairs (Figure 1) where the 

correlation due to the polarization induced by one electron, constitute an attraction potential to 

a second electron.  A Cooper pair is a bound state of two electrons, with energy at the Fermi 

surface having spins and vector momentum of opposite sign held together by interchange of a 

phonon between two electrons through the lattice. The interactions make it explicit so that no 

current is kept by the lattice and therefore no resistivity can manifest. Cooper pairs behave 

like a gas of electrons, a Fermi gas, each particle having twice the mass of electron (me) and 

twice the electron charge ( )e  moving in the presence of a magnetic field. By assuming that 

the cooper pair electrons interact attractively with each other but do not interact with the each 

other electrons except via Pauli exclusion principle, the classical Hamiltonian representing the 

energy of the system can be written in terms of generalized momentum pi vector potential 

( , )tA r and attractive potential   V r
 
of the cooper pairs, 
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Figure 1. Cooperpair. 

http://en.wikipedia.org/wiki/Fermi_energy
http://en.wikipedia.org/wiki/Fermi_energy
http://en.wikipedia.org/wiki/Superconductivity
http://en.wikipedia.org/wiki/Cooper_pair
http://en.wikipedia.org/wiki/Boson
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where 2 em m , 2q e   and sn  is the density of superconducting carriers. The attractive 

potential between two such electrons that extends over the distance l  is assumed to be a 

constant such that 
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where d is the distance between the two electrons and  is the displacement. The attractive 

potential is very small. Therefore for distance greater than l, the attractive potential   0V r ,  

and the classical energy of the system become  

 

 
22
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2 2

sn

s
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    r   (3) 

 

Since in quantum mechanics, operators represent observable quantities, the quantum 

mechanical Hamiltonian of a charged particle moving in a magnetic field read 

 

 21 ˆˆ ˆˆ( ( , ))  
2

i iH p qA t qV
m

  r r   (4) 

Ginzburg and Landau [4] assumed that in a superconductor, the superconducting 

electrons, that is the superfluid part is described by a single one-particle wave function ( ). r  

They imposed the plausible normalization, that it vanishes in the normal state, but take some 

finite value below the critical temperature usually normalized to the density of 

superconducting carriers ns . One-particle wave function is given by   

 
( )( )( ) i

sn e  k r
rr  (5) 

In order to find the energy eigenvalues, the time independent Schrodinger equation can 

be used: 

 

ˆ ( ) ( )H E r r   (6) 

 

Substituting the Hamiltonian given in equations 4 and wave function given in equation 

5 into time independent Schrodinger equation with  

 
ˆ ˆˆ ,   ( , ) ( , ),   ( ) ( ) 0i ip i A t A t V V     r r r r , the above equation read, 
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(7)  
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The expected value of the energy is, 

 

   
2 221

( ) ( ) k ( , ) ( ) ( , )
2 2

sn
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m m
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(8) 

 

As one electron in the Cooper pair has momentum k  and the other  k , when a 

superconductor is not carrying a current, the pair has zero net momentum with no net drift 

velocity. But when a current is flowing, there is a net drift velocity v  and a net momentum 

mv  along the direction of electron flow. Since the coupling by virtual phonons takes place 

between electrons with momentum ( )em v k  and ( )em v k , the pair  momentum is mv . If 

a weak magnetic field is applied parallel to the surface of a superconductor, then the vector 

potential A in an appropriate gauge is parallel to the surface and if the nodal planes are also 

assumed to be parallel to the surface, then the drift momentum p is 2 em v . If the magnetic 

vector potential A≠0, the pair is in motion with velocity ee m A /  [8]. With de Broglie 

hypothesis p k , the equation 8 read:  

 
2

24
( , ) .s

e

n e
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The magnetic vector potential A can be obtained from magnetic induction B ( ).A   

For a superconducting vortex with a cylindrical core of a radius r and approximate coherence 

length ,  the resulting magnetic field of the vortex, along the cylindrical core taken to be in 

the z-direction can be written in the form  

  0

2
ln

2
z

r
B r



 

 
  

 
 (10) 

where flux per vortex line 0 /h e  . The vector potential can be derived by using the London 

gauge 0A = . There is a minimum value of the total flux through any normal domain. The 

smallest domain is a quantized vortex or ux line, a tube-like region in which the order 

parameter and magnetic field take the values which would be excluded in the equilibrium 

bulk of the superconductor.The vector potential can be derived by using gauge invariant 

London gauge: 
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Substituting the value of the vector potential in the expression given in equation 8, the 

average energy: 
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The London equation based on a two-fluid picture, a normal fluid and a super fluid 

gives the relation between the electric current density inside a superconductor [3]. The 

supercurrent is given by 
 

s s sen J v       and         
2

s s s
s

e n
en

t t m

 
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 

J v
E   (13) 

 

Taking the curl of equation 13 with Maxwell’s equation of Faraday's law of induction,  
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Integrating equation 14 with the conditions that initially there is no supercurrent and 

magnetic field,  

 
2

se n

m
  J B   (15) 

 From Maxwell’s equation of Ampère's circuital law, 

 

  0 B J .  (16) 

 

Taking the curl of equation 16 and substituting to equationin 15: 
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where  is the penetration depth, the distance inside the surface over which an external 

magnetic field is screened out to zero with the assumption that there is no magnetic field in 

the bulk of the superconductor. The London equation giving the relation between the electric 

current density inside a superconductor, to the magnetic vector potential A can be obtained 

from in equation 15,  

 
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This equation is evidently not gauge-invariant. Charge conservation requires 0 J  

and thus the vector potential must be transverse. 0 A  is called the London gauge. 

Equation 18 can be used to find the simple mathematical description of a superconducting 

vortex having a cylindrical core of a radius r of approximately the coherence length  . The 

resulting magnetic field of the vortex, along the cylindrical core taken to be in the z-direction 

is given in equation 10 and the vector potential derived by using gauge invariant London 

gauge in equation 11. Substituting the value of vector potential in equation 18, current density 

can be obtained as 

 

https://en.wikipedia.org/wiki/Faraday%27s_law_of_induction
https://en.wikipedia.org/wiki/Amp%C3%A8re%27s_circuital_law
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The current density for the superconducting metal, niobium nitrite NbN [4] against the 

radial distance,  ( )rr      between the coherence length   of the superconducting material 

in the range of 3 5nm  and for the penetration depth   in the range of 200 350nm  is 

shown in Figure 2.  

 

 

3.  CURENT DENSITY IN GL THEORY 

 

The superconducting state has lower entropy than the normal state and therefore is the 

more ordered state. A general theory introduced by Landau, based on order parameter to 

describe phase transitions with just a few reasonable assumptions is remarkably powerful. In 

this context, an order parameter is a thermodynamic variable that is zero on one side of the 

transition and non-zero on the other. Based on an analogy with Bose-Einstein condensation, 

The thermodynamic free energy F of the system is assumed to be an analytic function of 

density of superconducting carriers  ns , so that its value Fs in the superconducting state can be 

expanded in a power series around its value in the normal state Fn close to the critical 

temperature Tc: 

 

2

2
s n s s

b
F F an n     (20) 

In the conventional description, known as the Landau model, one assumes that 

sufficiently close to Tc the free energy density relative to that of the normal state can be 

expanded in a Taylor series in the order parameter ψ:  

 
 

Figure 2. Side view (left) and top view (right) of the variation of the classical current density with 

core radius r for NbN ( and ) in London theory. 
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This assumes that the order parameter is real and that the free energy density is an even 

function of the order parameter. The phase transition takes place at ( ) 0cT  . Thus, a power 

series expansion of ( )T  around Tc may be expected to have the following leading form: 

 

 ( ) 0ca T T a   
  

(22) 

 

In the Ginzburg-Landau (GL) theory, however, ψ is assumed to be complex rather than 

real as is the case for a macroscopic wave function. Crucially, ψ couples to the 

electromagnetic field in the same way as for an ordinary wave function. Then canonical 

momentum has to be replaced by the kinetic momentum: 

 

       i i q  A     (23) 

 

where A is the vector potential and 2q e   is the relevant charge. A final part in the free 

energy is the relevant magnetic field energy density 2

0/ 2 .B   Therefore the Ginzburg-Landau 

free energy density, the condensation energy: 
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(24) 

 

where the effective mass 2 em m . To obtain the total free energy, the electromagnetic field 

energy must be included at each point r and integrated over the system. Therefore the total 

free energy of the superconductor and the magnetic field is 
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The first integral is carried out over the point r inside the sample, while the second is 

performed over all space. Minimizing the free energy or condensation energy with respect to 

the wave function and the vector potential respectively leads to the celebrated Ginzburg-

Landau equations [4]: 

 

     
22

22
r | | 0

2

e
i A r

m
    

 
     

 
  (26) 

 

A superconductor can be considered as a boson gas. By approximate an interacting 

ground state of a boson system by placing all bosons in the same state ( ) r and using Bose 

version of Hartree-Fock theory,  the ( ) r is proportional to order parameter ( ) r  and the GL 

free energy is the variational expectation. The term  
2

2 / 2i eA m   relates to the kinetic 
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energy term and the 
4

  term due to the interaction term. The dynamics of the macroscopic 

fields could be also derived from the microscopic hypothesis that all bosons have the same 

wave function ( ) r and if the number of bosons is given by Nb, then order parameter ( ) r  

 

( ) ( )bN  r r
  

(27) 

  

The result is the time-dependent Ginzburg-Landau equation given in equation 25. Using 

the order parameter and gauge invariant vector potential 0 A  called the Landon gauge, in 

Ginzburg-Landau equation of the current density becomes  
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In the limit of uniform wave function or order parameter ( ) r  equation 28 read  
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The order parameter field, ( ) r  
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(30) 

 

Here the arbitrary choice of   expresses the spontaneous breaking of the continuous 

gauge symmetry, while the magnitude   expresses the strength of superconductivity with 

0    
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At the classical limit 0 , the Ginzburg-Landau equation given in equation 31 

becomes equation 29. If the magnetic vector potential 0,A  the pair is in motion with 

velocity q m A /  with de Broglie hypothesis p k , equation 31 read:  
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Substituting the vector potential obtained for the London gauge in equation 11, for flux 

per vortex line, the equation 33 read 
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The GL current density as a function of position vector  ( )rr     for the 

superconducting metal, niobium nitrite NbN [4] between the coherence length   in the range 

of  3 5nm and the depth   in the range of 200 350nm  is shown in Figure 3. The 

variations of the current densities in classical limit with respect to radius using London and 

GL method are shown in Figure 4. Brown colour corresponds to the London current density 

while the blue colour corresponds to GL current density. Since the cooper pair has a small 

velocity which results a tiny momentum, the difference between the results do not vary much. 

 

 
4.  CLASSICAL PROBABILITY DENSITY  

 
Cooper pairs were treated classically as an ideal gas particle interacting weakly with 

each other satisfying Maxwell-velocity distribution. Number of molecules with velocity 

vectors terminating in a thin slice perpendicular to the x and y axis and at a distance from the 

origin in momentum space is  

   

Figure 3. Bottom view (left) and side view (right) of the variation of the current density with 

core radius r for NbN ( and ) in GL theory. 
 

                               

Figure 4. The side view (left), bottom view (middle) and at the classical limit (right), the current 

densities of London theory (brown) and GL theory (blue) for NbN and 

).  
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where m is the mass of the cooper pair, kB is the Boltzmann constant, T is the super 

conducting temperature and N is the total number of cooper pairs within the slice. Cooper is a 

common property for every superconductor and only the superconducting temperature depend 

on the material. Zn metal was taken as the superconducting material and with 

Superconducting temperature 0.85 K [7]. The momentum probability variation of cooper pairs 

with respect to momentum presented in the Figure 5 show a Gaussian probability peak around 

zero momentum. 

 

 
 

Fig. 5. Distribution of classical momentum probability density of cooper pairs in Zn with 

superconducting temperature 0.85K 

 

 

5.  BCS THEORY 
  

One of the significant achievements of the BCS theory is the explanation that the cooper 

pairs must have a definitive quantum mechanical phase θ and consequently that the particle 

number N is not fixed from the uncertainty principle. A Cooper is a single electron pair 

outside an occupied Fermi surface. The fermions forms a stable pair, bound state, no matter 

how weak is the attractive force. By constructing a many particles wave function in which all 

the electrons near the Fermi surface are paired up, that is a form of a coherent state, the 

energy gap was obtained by Schreifer. This energy gap 2Δ is the energy required to break up 

a pair into two free electrons. BCS theory gives the superconducting transition temperature Tc 
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in terms of the electron-phonon coupling potential V and the Debye cutoff energy ED. The 

electrons lie within Bk T  of the Fermi energy and D Bh k T   ( D Debye frequency).  

In the ground state, the spatial parts of the two wave functions should be identical. It is 

also expected that the electron wave components constituting the Cooper pair will have the 

wave vectors near the Fermi wave vector k
F 

at the top of the Fermi sea. The size of the Cooper 

pair is inversely proportional to the effective bandwidth of the band of electron components 

contributing to the pairing. Within the BCS theory, this effective bandwidth also provides 

self-consistently the binding energy of the Cooper pair. When the distance d between the two 

electrons is smaller than the Fermi wavelength 2F d   the angular momentum of the Cooper 

pair can be assumed to be zero. Therefore electron pair move against each other along very 

close, parallel paths and that they are equally likely to do so in any direction. That is, the wave 

function should be spherically symmetric. The Schrodinger equation is then of the same form 

as that of the ground state electron of the hydrogen atom: 
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By using a new function    r rR r   the equation 35 read 
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Under the quantum mechanical theory, the wave function of the cooper pairs can be 

obtained as  
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2 2 2 3
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Changing the wave function to a new function  ( ) /R r r r , the actual wave 

function read  

 

 
 0

1 1
sin

D

R r kr
r



 




   (38) 

 

Since   is the radial distance, the wave function can be converted into the Cartesian 

coordinate by taking 2 2r x y  . Then the actual wave function in coordinate space 

becomes  

 

http://en.wikipedia.org/wiki/Debye_frequency
http://en.wikipedia.org/wiki/Debye_frequency
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 
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2 2
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 

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To find out the momentum space wave function, it is Fourier transformed into the 

momentum space. If the new wave function is ( )p , then   

  . /

0

1
( )

2

ip rp e R r dr






    (40) 

By substituting   in terms of   and   the momentum space wave function can be 

derived in terms of Cartesian coordinates.  
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The momentum probability density,  
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Considering the Cooper pair as a boson particle with the spin zero, the quantum 

mechanical   momentum probability density is shown in Figure 6 for Zn metal. Fermi energy 

of the superconducting material was taken as 9.46 eV , the velocity of sound inside the 

superconducting material 14320 ms  and the total number of free electron 27/ 132 10N V   . 

 

 

Figure 6. Momentum probability density distribution of Cooper pairs for Zn. 
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Many peaks at different momentums can be observed in the graph. Both classical and 

quantum mechanical probability densities of Cooper pairs are presented in Figure 7.  Light 

blue colour region represents the classical distribution of the momentum probability density 

of cooper pairs while dark Colour peaks represent the quantum mechanical momentum 

probability distribution. The classical mechanical probability density peaked at the zero 

momentum and the quantum mechanical probability density distribution peaks observed for 

many momenta, overlap at zero momentum. Classically, the cooper pairs are condensed into 

the region where their momentum approximately equal to the zero value and hence the cooper 

pairs have negligible velocity. But in quantum mechanics Cooper pairs are moving with a 

considerable velocity distribution which can be attributed to many momentum probability 

peaks. As the classical mechanical treatment shows a peak at near the zero momentum, the 

quantum mechanical momentum probability density gives the highest peak at the zero point.  

 

 

Figure 7. Classical (Maxwell distribution) and quantum mechanical (BCS theory) momentum 

probability density distribution of Cooper pairs in Zn. 

 

 

7.  CONCLUSION 

 

Under London method and GL method at classical limit, that is when there is no 

momentum, the same current density distributions were obtained for the superconducting 

material NbN. When the cooper pair was considered as a complete classical particle with zero 

spin with Maxwell velocity distribution, the probability density was condensed into a small 

region near zero momentum. The most high momentum density of cooper pairs occurs at zero 

momentum as cooper pairs remain stationary inside a superconductor.  
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The classical momentum or position probability density model used for cooper pairs for 

Zn superconductor, gave results that can be accepted with the quantum model.  
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