PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the operation of a switched reluctance motor in the extended constant power range

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an analysis of the properties of a switched reluctance motor (SRM) 8/6 in an extended constant power range is presented. The typical constant power range to constant torque range ratio is between 2 and 3. In the case of machines designed as an electric vehicle drive, it is important to maximize this ratio. In the case of an SRM, it is possible to achieve this by applying an appropriate control strategy. An analysis of the SRM operation utilizing a modified control algorithm allows control of the maximum value of the motor phase current. As a consequence, using the so-called nonzero initial conditions for the current and flux allows the output power to be maintained in a wide speed range. For the improvement of drive system efficiency, the work of the phase current regulator should be limited to a minimum. The most advantageous work conditions we obtain with single-time current regulator work. Laboratory verification has been performed for selected states of motor work.
Rocznik
Strony
43--58
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wz.
Twórcy
  • Faculty of Electrical and Computer Engineering Rzeszow University of Technology Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Faculty of Electrical and Computer Engineering Rzeszow University of Technology Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Faculty of Electrical and Computer Engineering Rzeszow University of Technology Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • [1] Agamloh E., von Jouanne A., Yokochi A., An Overview of Electric Machine Trends in Modern Electric Vehicles, Machines, vol. 8, no. 2, pp. 1–16 (2020), DOI: 10.3390/machines8020020.
  • [2] Yildirim M., Polat M., Kürüm H., A survey on comparison of electric motor types and drives used for electric vehicles, 16th International Power Electronics and Motion Control Conference and Exposition, pp. 218–223 (2014), DOI: 10.1109/EPEPEMC.2014.6980715.
  • [3] Pindoriya R. M., Rajpurohit B. S., Kumar R., Srivastava K. N., Comparative analysis of permanent magnet motors and switched reluctance motors capabilities for electric and hybrid electric vehicles, IEEMA Engineer Infinite Conference (eTechNxT), pp. 1–5 (2018), DOI: 10.1109/ETECHNXT.2018.8385282.
  • [4] Dutta R., Rahman M. F., Design and Analysis of an Interior Permanent Magnet (IPM) Machine with Very Wide Constant Power Operation Range, IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 25–33 (2008), DOI: 10.1109/TEC.2007.905061.
  • [5] Bernard N., Dang L., Olivier J. C., Bracikowski N., Wasselynck G., Berthiau G., Design Optimization of High-Speed PMSM for Electric Vehicles, IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–6 (2015), DOI: 10.1109/VPPC.2015.7352927.
  • [6] Liu X., Chen H., Zhao J., Belahcen A., Research on the Performances and Parameters of Interior PMSM Used for Electric Vehicles, IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3533–3545 (2016), DOI: 10.1109/TIE.2016.2524415.
  • [7] Chau K. T., Chan C. C., Liu C., Overview of Permanent-Magnet Brushless Drives for Electric and Hybrid Electric Vehicles, IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2246–2257 (2008), DOI: 10.1109/TIE.2008.918403.
  • [8] Hashemnia N., Asaei B., Comparative study of using different electric motors in the electric vehicles, 18th International Conference on Electrical Machines, pp. 1–5 (2008), DOI: 10.1109/ICEL-MACH.2008.4800157.
  • [9] Park H., Lim M., Design of High Power Density and High Efficiency Wound-Field Synchronous Motor for Electric Vehicle Traction, IEEE Access, vol. 7, pp. 46677–46685 (2019), DOI: 10.1109/AC-CESS.2019.2907800.
  • [10] Schofield N., Long S. A., Howe D., McClelland M., Design of a Switched Reluctance Machine for Extended Speed Operation, IEEE Transactions on Industry Applications, vol. 45, no. 1, pp. 116–122 (2009), DOI: 10.1109/TIA.2008.2009506.
  • [11] Bertoluzzo M., Buja G., Development of Electric Propulsion Systems for Light Electric Vehicles, IEEE Transactions on Industrial Informatics, vol. 7, no. 3 (2011), DOI: 10.1109/TII.2011.2158840.
  • [12] Cai W., Comparison and Review of Electric Machines for Integrated Starter Alternator Applications, Conference Record of the 2004 IEEE Industry Applications Conference, 39th IAS Annual Meeting (2004), DOI: 10.1109/IAS.2004.1348437.
  • [13] Zaghari B., Stuikys A., Weddell A.S., Beeby S., Efficient Energy Conversion in Electrically Assisted Bicycles Using a Switched Reluctance Machine Under Torque Control, IEEE Access, vol. 20 (2020)
  • [14] Howey B., Bilgin B., Emadi A., Design of an External-Rotor Direct Drive E-Bike Switched Reluctance Motor, IEEE Transactions on Vehicular Technology, vol. 69, no. 3 (2020), DOI: 10.1109/TVT.2020.2965943.
  • [15] Moore S. W., Rahman K. M., Ehsani M., Effect on Vehicle Performance of Extending the Constant Power Region of Electric Drive Motors, SAE Technical Papers Series 1999-01–1152 (1999), DOI: 10.4271/1999-01-1152.
  • [16] 16 Miller T. J. E., Electronic Control of Switched Reluctance Machines, Newnes (2001)
  • [17] Yoopakdee C., Fuengwarodsakul N. H., Experimental investigation of control parameters of SRM drive in continuous conduction mode, 2015 18th International Conference on Electrical Machines and Systems (ICEMS), pp. 898–903 (2015), DOI: 10.1109/ICEMS.2015.7385162.
  • [18] Hannoun H., Hilairet M., Marchand C., Experimental Validation of a Switched Reluctance Machine Operating in Continuous-Conduction Mode, IEEE Transactions on Vehicular Technology, vol. 60, no. 4, pp. 1453–1460 (2011), DOI: 10.1109/TVT.2011.2124478.
  • [19] Korkosz M., Mazur D., Operation of the switched reluctance motor at continuous conduction of phase current, 2006 IEEE Mediterranean Electrotechnical Conference, pp. 1166–1169 (2006), DOI: 10.1109/MELCON.2006.1653308.
  • [20] Chiba A., Takeno M., Hoshi N., Takemoto M., Ogasawara S., Rahman M. A., Consideration of Number of Series Turns in Switched-Reluctance Traction Motor Competitive to HEV IPMSM, IEEE Transactions on Industry Applications, vol. 48, no. 6, pp. 2333–2340 (2012), DOI: 10.1109/TIA.2012.2227093.
  • [21] 21 Kiyota K., Chiba A., Design of Switched Reluctance Motor Competitive to 60-kW IPMSM in Third-Generation Hybrid Electric Vehicle, IEEE Transactions on Industry Applications, vol. 48, no. 6, pp. 2303–2309 (2012), DOI: 10.1109/TIA.2012.2227091.
  • [22] Bogusz P., Korkosz A., Powrózek A., Analysis of mutual couplings influence on properties of the switched reluctance machine, Przegląd Elektrotechniczny (in Polish), vol. 91, no. 8, pp. 139–142 (2015), DOI: 10.15199/48.2015.08.33.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6aef992c-aa85-411f-b165-96e778c2bcfb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.