PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical analysis of the influence of the flux-cored wire chemical composition on the electrical parameters and quality in the underwater wet cutting

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents research in the field of underwater wet cutting with the use of flux-cored wires in order to improve the quality and performance. The research has resulted into the development of gas and slag systems for flux-cored wires and determination of , optimal parameters for cutting stability and quality. The underwater wet cutting mechanism is a cyclical process with the formation of periodic keyholes in metal, and it consists of operating and idle cycles. Efficiency of the cutting process can be determined by analyzing cycle times, welding current, voltage, power and a number of short circuits. To assess the stability and efficiency of the underwater wet cutting process, the authors have developed the method for analyzing oscillograms to calculate the probability density of current, voltage and power. To determine the quality of cutting, the authors have provided a criterion based on the ratio of the voltage probability density in the idle and operating cycles.
Rocznik
Strony
77--89
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Institute of Mechanical Engineering, Materials and Transport; Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
autor
  • Department of Underwater Welding and Technologies; Educational Scientific and Technical Center «Svarka», St. Petersburg, Russia
autor
  • Institute of Mechanical Engineering, Materials and Transport; Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
autor
  • Institute of Mechanical Engineering, Materials and Transport; Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
Bibliografia
  • 1. Surojo E., Putri E.D.W.S., Budiana E.P., Triyono: Recent developments on underwater welding of metallic material. Procedia Structural Integrity 27 (2020), pp. 14–21.
  • 2. Shin J.S., Oh S.Y., Park S., Park H., Kim T.-S., Lee L., Kim Y., Lee J.: Underwater laser cutting of stainless steel up to 100 mm thick for dismantling application in nuclear power plants. Annals of Nuclear Energy 147 (2020), pp. 1–9.
  • 3. Jain R.K., Agrawal D.K., Vishwakarma S.C., Choubey A.K., Upadhyaya B.N., Oak S.M.: Development of underwater laser cutting technique for steel and zircaloy for nuclear applications. Pramana 75 (2010), pp. 1253–1258.
  • 4. Wang L., Xie F., Feng Y., Wang Z.: Innovative methodology and database for underwater robot repair welding: a technical note. ISIJ International 57 (2017), pp. 203–205.
  • 5. Yushchenko KA., Bulat A.V., Kakhovsky N.Yu., Samolenko V.I., Maksimov S.Yu., Grigorenko S.G.: Investigation of composition and structure of weld metal of Cr20Ni9Mn2Nb type made in wet underwater welding. The Paton Welding Journal 6-7 (2014), pp. 135–138.
  • 6. Hristov H.V.: Increasing the efficiency in oxy-arc underwater cutting with exothermic electrodes. Proceedings of Doctoral Scientific Conference. Varna, 18–19 November 2019 г. Naval Academy, Varna, Bulgaria, pp. 111–116.
  • 7. Moreno-Uribe A.M., Bracarense A.Q., Pessoa E.C.P.: The effect of polarity and hydrostatic pressure on operational characteristics of rutile electrode in underwater welding. Materials 13, 5001 (2020).
  • 8. Carvalho G.M.D.A., Bracarense A.Q., Pessoa E.C.P., Gonçalves C.N.: Effect of grinding technique on the hardness HAZ of wet underwater multipass welds. Soldagem & Inspeção 25 (2020), pp. 1–9.
  • 9. Xu C., Guo N., Zhang X., Jiang H., Tan Y., Zhou L.: Influence of welding speed on weld pool dynamics and welding quality in underwater wet FCAW. Journal of Manufacturing Processes 55 (2020), pp. 381–388.
  • 10. Sun K., Zeng M., Shi Y., Hu Y., Shen X.: Microstructure and corrosion behavior of S32101 stainless steel underwater dry and wet welded joints. Journal of Materials Processing Technology 256 (2018), pp. 190–201.
  • 11. Wang J., Sun Q., Zhang T., Xu P., Feng J.: Experimental study of arc bubble growth and detachment from underwater wet FCAW. Welding in the World 63 (2019), pp. 1747–1759.
  • 12. Yang Q., Han Y., Jia C., Dong S., Wu C.: Visual investigation on the arc burning behaviors and features in underwater wet FCAW. Journal of Offshore Mechanics and Arctic Engineering 142 (2020), pp. 1–22.
  • 13. Świerczyńska A., Fydrych D., Rogalski G.: Diffusible hydrogen management in underwater wet self-shielded flux cored arc welding. International Journal of Hydrogen Energy 42(38), (2017), pp. 24532–24540.
  • 14. Brätz O., Henkel K.-M. Investigation of diffusible hydrogen content in drawn arc stud weld metal. Welding in the World 63, 4, (2019), pp. 957–965.
  • 15. Li W., Zhao J., Wang J, Wang J, Jia H., Li Z., Maksimov S.Y.: Research on arc cutting mechanism and procedure of flux-cored cutting wire in water. The International Journal of Advanced Manufacturing Technology 98 (2018), pp. 2895–2904.
  • 16. Li W., Zhao J., Wang Y., Wang J, Wang J, Jia H., Li Z., Wu J.: Research on underwater flux cored arc cutting mechanism based on simulation of kerf formation. Journal of Manufacturing Processes 40 (2019), pp. 169–177.
  • 17. Liu D., Lia H., Yan Y., Guo, N., Song X., Feng J.: Effects of processing parameters on arc stability and cutting quality in underwater wet flux-cored arc cutting at shallow water. Journal of Manufacturing Processes 33 (2018), pp. 24–34.
  • 18. Klett J., Wolf T., Maier H.J., Hassel T.: The applicability of the standard DIN EN ISO 3690 for the analysis of diffusible hydrogen content in underwater wet welding. Materials 13, 3750, (2020).
  • 19. Klett J., Hecht-Linowitzki V., Grünzel O., Schmidt E., Maier H.J., Hassel T.: Effect of the water depth on the hydrogen content in SMAW wet welded joints. SN Applied Sciences 2:1269 (2020), pp. 1–14.
  • 20. Wang J., Shi J., Wang J, Li W., Liu C. Xu G., Maksimov S.Y., Zhu Q.: Numerical study on the temperature field of underwater flux-cored wire arc cutting process. The International Journal of Advanced Manufacturing Technology 91 (2017), pp. 2777–2786.
  • 21. Zhao B., Chen J., Wu C., Shi L.: Numerical simulation of bubble and arc dynamics during underwater wet flux-cored arc welding. Journal of Manufacturing Processes 59 (2020), pp. 167–185.
  • 22. Chen H., Guo N., Xu K., Liu C., Wang G.: Investigating the advantages of ultrasonic-assisted welding technique applied in underwater wet welding by in-situ X-ray imaging method. Materials 13(6), 1442 (2020).
  • 23. Li W., Wang H., Yu R., Wang J., Wang J., Wu M., Maksimov S.Y.: High-speed photography analysis for underwater flux-cored wire arc cutting process. In: Transactions on intelligent welding manufacturing. Springer, Singapore (2020), pp. 141–151.
  • 24. Tomków J., Fydrych D., Wilk K.: Effect of electrode waterproof coating on quality of underwater wet welded joints. Materials 13, 2947, (2020).
  • 25. Parshin S., Levchenko A.: Technology and equipment for underwater wet welding and cutting of high strength steel arctic structures using flux-cored wires. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing 539, 1 (2020), p. 012132.
  • 26. Hilton P.A., Khan A.: Underwater cutting using a 1 μm laser source. Journal of Laser Applications 27, 032013 (2015), pp. 1–8.
  • 27. Wang J.Y., He C.H., Li W.H., Yang F.: Characteristics of underwater swirling plasma arc cut quality. Advanced Materials Research 97-101 (2010), pp. 3974–3977.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6aee9a23-f0bc-4808-8db3-3163d9edd5c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.