PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of wet-process phosphoric acid for high-quality phosphogypsum

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The chronic accumulation of phosphogypsum (PG) has resulted in significant environmental contamination issues within the wet-process phosphoric acid (WPPA) industry. An innovative technical route for transforming PG into a resource has been achieved through the introduction of floc flotation and acid cleaning in WPPA. The floc flotation using cationic polyacrylamide as a flocculant and micro lotion, which is composed of dioctyl phthalate, polyoxyethylene(10)nonylphenyl ether, kerosene, and n-octanol as a collector, has been performed. The effect of floc flotation on product quality and the underlying mechanisms were investigated by XRF, FT-IR, SEM, and 2-dimensional fractal dimension analysis. The optimal parameters were determined through a factor experiment, which yielded the following results: floc flotation temperature 65ºC, cationic polyacrylamide 180 g/Mg, collector 1.08 kg/Mg, and flushing sulfuric acid concentration 20%. The resulting PG exhibited a high grade of 95.01%, whiteness of 70.8%, and gypsum recovery of 93.52%. Furthermore, the soluble phosphorus and soluble fluorine levels are below 0.1%. In the flotation process, the combination of polyacrylamide and collector effectively separated fine organic matter and siliceous material with a hydrophobic bubble, facilitating their upward movement and subsequent separation from PG. The new WPPA, which exhibits enhanced product quality and reduced production costs, can be utilized extensively within the WPPA.
Rocznik
Strony
art. no. 192938
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
  • School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, Hubei, China
autor
  • School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, Hubei, China
  • School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, Hubei, China
autor
  • School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, Hubei, China
autor
  • School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, Hubei, China
  • Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430074, Hubei, China
autor
  • Research and Development Center, Hubei Three Gorges Laboratory, Yichang 443007, China
autor
  • School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, Hubei, China
  • Hubei Yangtze Resources Recycling and Equipment Innovation R&D Center Co., Ltd, Wuhan 430223, China
autor
  • School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, Hubei, China
  • Hubei Yangtze Resources Recycling and Equipment Innovation R&D Center Co., Ltd, Wuhan 430223, China
Bibliografia
  • ANDRADE NETO, J. S., BERSCH, J. D., SILVA, T. S. M., RODRíGUEZ, E. D., SUZUKI, S., KIRCHHEIM, A. P., 2021. Influence of phosphogypsum purification with lime on the properties of cementitious matrices with and without plasticizer. Constr. Build. Mater. 299, 123935.
  • CAI, Q., JIANG, J., MA, B., SHAO, Z., HU, Y., QIAN, B.WANG, L., 2021. Efficient removal of phosphate impurities in waste phosphogypsum for the production of cement. Sci. Total. Environ. 780, 146600.
  • CAO, J., WANG, Z., MA, X., YANG, X., ZHANG, X., PAN, H., WU, J., XU, M., LIN, L., ZHANG, Y., XIAO, Y.LUO, H., 2022. Promoting coordinative development of phosphogypsum resources reuse through a novel integrated approach: A case study from China. J. Clean. Prod. 374, 134078.
  • CHEN, S., CHEN, J., HE, X., SU, Y., JIN, Z., FAN, J., QI, H..WANG, B., 2023. Comparative analysis of colloid-mechanical microenvironments on the efficient purification of phosphogypsum. Constr. Build. Mater. 392, 132037.
  • CHERNYSH, Y., YAKHNENKO, O., CHUBUR, V..ROUBíK, H., 2021. Phosphogypsum Recycling: A Review of Environmental Issues, Current Trends, and Prospects. Appl. Sci. 11,1575.
  • CUADRI, A. A., PéREZ-MORENO, S., ALTAMAR, C. L., NAVARRO, F. J..BOLíVAR, J. P., 2021. Phosphogypsum as additive for foamed bitumen manufacturing used in asphalt paving. J. Clean. Prod. 283, 124661.
  • DAI, D., QV, M., LIU, D., TANG, C., WANG, W., WU, Q., YIN, Z..ZHU, L., 2023. Structural insights into mechanisms of rapid harvesting of microalgae with pH regulation by magnetic chitosan composites: A study based on E-DLVO model and component fluorescence analysis. Chem. Eng. J. 456, 141071.
  • DU, M., WANG, J., DONG, F., WANG, Z., YANG, F., TAN, H., FU, K..WANG, W., 2022. The study on the effect of flotation purification on the performance of alpha-hemihydrate gypsum prepared from phosphogypsum. Sci. Rep. 12(1), 95.
  • EL ZRELLI, R., RABAOUI, L., ABDA, H., DAGHBOUJ, N., PéREZ-LóPEZ, R., CASTET, S., AIGOUY, T., BEJAOUI, N..COURJAULT-RADé, P., 2019. Characterization of the role of phosphogypsum foam in the transport of metals and radionuclides in the Southern Mediterranean Sea. J. Hazard. Mater. 363, 258-267.
  • ENNACIRI, Y., ZDAH, I., EL ALAOUI-BELGHITI, H..BETTACH, M., 2019. Characterization and purification of waste phosphogypsum to make it suitable for use in the plaster and the cement industry. Chem. Eng. J. 207(3), 382-392.
  • FANG, J., GE, Y., CHEN, Z., XING, B., BAO, S., YONG, Q., CHI, R., YANG, S..NI, B. J., 2022. Flotation purification of waste high-silica phosphogypsum. J. Environ. Manage. 320, 115824.
  • GUAN, Q., SUI, Y., YU, W., BU, Y., ZENG, C., LIU, C., ZHANG, Z., GAO, Z.CHI, R.-A., 2022. Deep removal of phosphorus and synchronous preparation of high-strength gypsum from phosphogypsum by crystal modification in NaCl-HCl solutions. Sep. Purif. Technol. 298, 121592.
  • GUAN, Q., ZHOU, Y., YU, W., FAN, R., SUI, Y., BU, Y., YIN, Z., CHI, R.-A.GAO, Z., 2023. Efficient removal of impurities from phosphogypsum during preparation of α-hemihydrate gypsum. Miner. Eng. 201, 108203.
  • HAMMAS-NASRI, I., HORCHANI-NAIFER, K., FéRID, M..BARCA, D., 2016. Rare earths concentration from phosphogypsum waste by two-step leaching method. Int. J. Miner. Process. 149, 78-83.
  • LI, B., SHU, J., YANG, L., TAO, C., CHEN, M., LIU, Z..LIU, R., 2019. An innovative method for simultaneous stabilization/solidification of PO43− and F− from phosphogypsum using phosphorus ore flotation tailings. J. Clean. Prod. 235, 308-316.
  • LI, J., GUO, Y., FAN, P., LI, H., CHEN, C., XU, S.DU, L., 2023. A flotation combined extraction process for improving the whiteness of phosphogypsum. Physicochem. Probl. Miner. Process, 59(3), 170043.
  • LI, X..ZHANG, Q., 2021. Dehydration behaviour and impurity change of phosphogypsum during calcination. Constr. Build. Mater. 311, 125328.
  • LIANG, H., ZHANG, P., JIN, Z.DEPAOLI, D., 2017. Rare earths recovery and gypsum upgrade from Florida phosphogypsum. Miner. Metall. Process. 34(4), 201-206.
  • LIU, S., WANG, L..YU, B., 2019a. Effect of modified phosphogypsum on the hydration properties of the phosphogypsumbased supersulfated cement. Constr. Build. Mater. 214, 9-16.
  • LIU, Y., ZHANG, Q., CHEN, Q., QI, C., SU, Z.HUANG, Z., 2019b. Utilisation of Water-Washing Pre-Treated Phosphogypsum for Cemented Paste Backfill. Minerals 9(3), 175.
  • LOKSHIN, E. P., TAREEVA, O. A A. ELIZAROVA, I. R., 2013. On integrated processing of phosphogypsum. Russ. J. Appl. Chem. 86(4), 463-468.
  • LOKSHIN, E. P., TAREEVA, O. A...ELIZAROVA, I. R., 2014. Features of behavior of thorium at sulfuric acid processing of phosphogypsum. Russ. J. Appl. Chem. 87(9), 1254-1259.
  • LV, X..XIANG, L., 2022. The Generation Process, Impurity Removal and High-Value Utilization of Phosphogypsum Material. Nanomaterials 12(17), 3021.
  • MACíAS, F., CáNOVAS, C. R., CRUZ-HERNáNDEZ, P., CARRERO, S., ASTA, M. P., NIETO, J. M..PéREZ-LóPEZ, R., 2017. An anomalous metal-rich phosphogypsum: Characterization and classification according to international regulations. J. Hazard. Mater. 331, 99-108.
  • MEN, J., LI, Y., CHENG, P..ZHANG, Z., 2022. Recycling phosphogypsum in road construction materials and associated environmental considerations: A review. Heliyon 8(11), e11518.
  • MI, Y., CHEN, D..WANG, A., 2019. Effects of phosphorus impurities on the preparation of α-calcium sulfate hemihydrate from waste phosphogypsum with the salt solution method under atmospheric pressure. CrystEngComm 21(16), 2631-2640.
  • MOALLA, R., GARGOURI, M., KHMIRI, F., KAMOUN, L..ZAIRI, M., 2017. Phosphogypsum purification for plaster production: A process optimization using full factorial design. Environmental Engineering Research 23(1), 36-45.
  • MOALLA, R., GARGOURI, M., KHMIRI, F., KAMOUN, L..ZAIRI, M., 2018. Phosphogypsum purification for plaster production: A process optimization using full factorial design. Environ. Eng. Res. 23(1), 36-45.
  • MUN, K. J., HYOUNG, W. K., LEE, C. W., SO, S. Y.SOH, Y. S., 2007. Basic properties of non-sintering cement using phosphogypsum and waste lime as activator. Constr. Build. Mater. 21(6), 1342-1350.
  • PALLA, S., SHARMA, P., RAO, M. V. R., RAMAKRISHNA, S., VANGURI, S.MOHAPATRA, B. N., 2022. Solar thermal treatment of phosphogypsum and its impact on the mineralogical modification for effective utilization in cement production. J. Build. Eng. 51, 104218.
  • QI, M., PENG, W., WANG, W., CAO, Y., FAN, G..HUANG, Y., 2023. Simple and efficient method for purification and recovery of gypsum from phosphogypsum: Reverse-direct flotation and mechanism. J. Mol. Liq. 371(1), 121111.
  • ROSALES, J., PéREZ, S. M., CABRERA, M., GáZQUEZ, M. J., BOLIVAR, J. P., DE BRITO, J..AGRELA, F., 2020. Treated phosphogypsum as an alternative set regulator and mineral addition in cement production. J. Clean. Prod. 244, 118752.
  • SALO, M., KNAUF, O., MäKINEN, J., YANG, X..KOUKKARI, P., 2020. Integrated acid leaching and biological sulfate reduction of phosphogypsum for REE recovery. Miner. Eng. 155, 106408.
  • SHU, J., ZHAO, J., WEI, X., CHEN, M., LI, B., GAO, Y., YANG, Y.DENG, Z., 2023. Synergistic harmless treatment of phosphogypsum leachate wastewater with iron-rich electrolytic manganese residue and electric field. Miner. Eng. 204, 108399.
  • SINGH, M., 2002. Treating waste phosphogypsum for cement and plaster manufacture. Cement Concrete Res. 32(7), 1033-1038.
  • TOVAZHNYANSKY, L. L., MESHALKIN, V. P., KAPUSTENKO, P. O., BUKHKALO, S. I., ARSENYEVA, O. P..PEREVERTAYLENKO, O. Y., 2013. Energy efficiency of complex technologies of phosphogypsum conversion. Theor. Found. Chem. Eng. 47(3), 225-230.
  • VASCONEZ-MAZA, M. D., BUESO, M. C., FAZ, A., ACOSTA, J. A..MARTINEZ-SEGURA, M. A., 2021. Assessing the behaviour of heavy metals in abandoned phosphogypsum deposits combining electrical resistivity tomography and multivariate analysis. J. Environ. Manage. 278(Pt 1), 111517.
  • WANG, J., DONG, F., WANG, Z., YANG, F., DU, M., FU, K..WANG, Z., 2020. A novel method for purification of phosphogypsum. Physicochem. Probl. Miner. Process. 56(5), 975-983.
  • WANG, T., ZHOU, Y., LV, Q., ZHU, Y.JIANG, C., 2011. A safety assessment of the new Xiangyun phosphogypsum tailings pond. Miner. Eng. 24(10), 1084-1090.
  • WANG, Z., SHUI, Z., SUN, T., LI, X..ZHANG, M., 2022. Recycling utilization of phosphogypsum in eco excess-sulphate cement: Synergistic effects of metakaolin and slag additives on hydration, strength and microstructure. J. Clean. Prod. 358, 131901.
  • WU, F., HE, M., QU, G., ZHANG, T., REN, Y., KUANG, L., NING, P., LI, J..LIU, Y., 2022. Highly targeted stabilization and release behavior of hazardous substances in phosphogypsum. Miner. Eng. 189, 107866.
  • XIANG, J., QIU, J., ZHENG, P., SUN, X., ZHAO, Y.GU, X., 2023. Usage of biowashing to remove impurities and heavy metals in raw phosphogypsum and calcined phosphogypsum for cement paste preparation. Chem. Eng. J. 451, 138594.
  • XIAO, J., LU, T., ZHUANG, Y..JIN, H., 2022. A Novel Process to Recover Gypsum from Phosphogypsum. Materials (Basel) 15(5), 1944.
  • XU, J., XU, F., WU, Y., LIU, Y., YANG, F., JIAO, Y., JIANG, Y., ZHU, J., LI, S., WANG, D..LI, B., 2022. Investigation on properties and mechanism of non-calcined Bayer red mud-phosphogypsum cementitious binder. J. Clean. Prod. 379, 134661.
  • YANG, Z., YANG, H., JIANG, Z., CAI, T., LI, H., LI, H., LI, A..CHENG, R., 2013. Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide. J J. Hazard. Mater. 254-255, 36-45.
  • ZENG, L.-L., BIAN, X., ZHAO, L., WANG, Y.-J..HONG, Z.-S., 2021. Effect of phosphogypsum on physiochemical and mechanical behaviour of cement stabilized dredged soil from Fuzhou, China. Geomech. Energy. Environ. 25, 100195.
  • ZHANG, H., CHAI, W..CAO, Y., 2022. Flotation separation of quartz from gypsum using benzyl quaternary ammonium salt as collector. Applied Surface Science 576.
  • ZHOU, Z., LU, Y., ZHAN, W., GUO, L., DU, Y., ZHANG, T. C..DU, D., 2022. Four stage precipitation for efficient recovery of N, P, and F elements from leachate of waste phosphogypsum. Miner.Eng.178, 107420.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6aed15c6-7be3-4131-9961-e26c84db376c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.