PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of polyethylene glycol on surface coating of Ta2O5 onto titanium substrate in sol-gel technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Recently, titanium (Ti) and its alloys have been widely used in dental and surgical implants in the last few decades. However, there is a loosening effect over a long period usage. Therefore, the present study aimed to increase life of an implant by its surface modification. Methods: In present study, sol-gel process has been applied to create tantalum pentoxide (Ta2O5) layer coating on Ti-substrate. In this technique, polyethylene glycol (PEG) plays an important role to form uniform porous coating, which can have potential application in formation of strong bonding to the natural bone. Results: Microstructural, elemental, structural and binding energy results showed that the material with 100% PEG-enhanced sol-gel Ta2O5 with spin coating onto Ti substrate followed by an optimized sintering temperature (500 °C) has better porous structure than that of 5% PEG-enhanced sol-gel Ta2O5 coating, and would be suitable for tissue in-growth properties. Conclusions: Therefore, it was concluded that the present spin coated 100% PEG-enhanced Ta2O5 coating onto Ti, having the most suitable morphology with enhanced roughness, could be noteworthy for potential tissue in-growth and it could provide desired bonding at the interface of Ti-implant coating and host tissues in biomedical applications.
Słowa kluczowe
EN
PL
spiekanie   PEG   tantal  
Rocznik
Strony
197--206
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur–603203, Kanchipuram, Chennai, TN, India
  • Department of Mechanical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur–603203, Kanchipuram, Chennai, TN, India
autor
  • Department of Mechanical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur–603203, Kanchipuram, Chennai, TN, India
Bibliografia
  • [1] ARBUJ S.S., MULIK U.P., AMALNERKAR D.P., Synthesis of Ta2O5/TiO2 coupled semiconductor oxide nanocomposites with high photocatalytic activity, Nanosci. Nanotechnol. Lett., 2013, 5, 968–973.
  • [2] ARNOULD C., VOLCKE C., LAMARQUE C., Titanium modified with layer-by-layer sol–gel tantalum oxide and an organodiphosphonic acid: A coating for hydroxyapatite growth, J. Colloid Interface Sci., 2009, 336, 497–503.
  • [3] BALAGNA C., FAGA M.G., SPRIANO S., Tribological behavior of a Ta-based coating on a Co–Cr–Mo alloy, Surf. Coat Technol., 2014, 258, 1159–1170.
  • [4] CHANG Y.Y., HUANG H.L., CHEN H.J., LAI C.H., WEN C.Y., Antibacterial properties and cytocompatibility of tantalum oxide coatings, Surf. Coat Tech., 2014, 259, 193–198.
  • [5] FATHI M., AZAM F., Novel hydroxyapatite/tantalum surface coating for metallic dental implant, Mater. Lett., 2007, 61, 1238–1241.
  • [6] FRANCISCO M., CARDOSO W., GUSHIKEM Y., Surface modification with phosphoric acid of SiO2/Nb2O5 prepared by the Sol-Gel method: structural−textural and acid sites studies and an ion exchange model, Langmuir, 2004, 20, 8707–8714.
  • [7] GEORGIEV R., GEORGIEVA B., LAZAROVA K., VASILEVA M., BABEVA T., Sol–gel tantalum pentoxide thin films with tunable refractive index for optical sensing applications, Opt. Quantum Electron., 2020, 52 (10), 1–12.
  • [8] GUL C., ALBAYRAK S., CINICI H., Characterization of Tantalum Oxide Sol–Gel-coated AZ91 Mg Alloys, Trans. Indian Inst. Met., 2020, 73 (5), 1249–1256.
  • [9] GUPTA S.K., MOHAPATRA M., GODBOLE S., On the unusual photoluminescence of Eu3+ in α-Zn2P2O7: a time resolved emission spectrometric and Judd–O felt study, RSC Adv., 2013, 3, 20046–20053.
  • [10] HEE A.C., JAMALI S.S., BENDAVID A., MARTIN P.J., KONG C., ZHAO Y., Corrosion behaviour and adhesion properties of sputtered tantalum coating on Ti6Al4V substrate, Surf. Coat Tech., 2016, 307, 666–675.
  • [11] INNOCENTINI M., FALEIROS R., PISANI R., Permeability of porous gelcast scaffolds for bone tissue engineering, J. Porous Mater., 2010, 17, 615–627.
  • [12] KIM H.-W., KIM H.-E., KNOWLES J.C., Fluor-hydroxyapatite sol–gel coating on titanium substrate for hard tissue implants, Biomaterials, 2004, 25, 3351–3358.
  • [13] KŁONICA M., KUCZMASZEWSKI J., Modification of Ti6Al4V Titanium Alloy Surface Layer in the Ozone Atmosphere, Mater. Des., 2019, 12, 2113.
  • [14] KOKUBO T., Design of bioactive bone substitutes based on biomineralization process, Mater. Sci. Eng., 2005, 25, 97–104.
  • [15] KULISCH W., GILLILAND D., CECCONE G., Tantalum pentoxide as a material for biosensors: deposition, properties and applications, [in:] Nanostructured Materials for Advanced Technological Applications, J. Reithmaier, P. Petkov, W. Kulisch, C. Popov (Eds.), Springer, 2009, 509–524.
  • [16] LI X., WANG, L., YU X., FENG Y., WANG C., YANG K., SU D., Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation, Mater. Sci. Eng. C, 2013, 33 (5), 2987–2994.
  • [17] MAHO A., LINDEN S., ARNOULD C., DETRICHE S., DELHALLE J., MEKHALIF Z., Tantalum oxide/carbon nanotubes composite coatings on titanium, and their functionalization with organophosphonic molecular films: A high quality scaffold for hydroxyapatite growth, J. Colloid Interface Sci., 2012, 371 (1), 150–158.
  • [18] MIYAZAKI T., KIM H.-M., KOKUBO T., Induction and acceleration of bonelike apatite formation on tantalum oxide gel in simulated body fluid, J. Solgel Sci. Technol., 2001, 21, 83–88.
  • [19] NDIEGE N., WILHOITE T., SUBRAMANIAN V., Sol−Gel Synthesis of Thick Ta2O5 Films, Chem. Mater., 2007, 19, 3155–3161.
  • [20] PRAMANIK S., ATAOLLAHI F., PINGGUAN-MURPHY B., OSHKOUR A.A., ABU OSMAN N.A., In vitro study of surface modified poly (ethylene glycol)-impregnated sintered bovine bone scaffolds on human fibroblast cells, Sci. Rep., 2015, 5, 9806.
  • [21] RAO K.T.V., SOUZANCHI S., YUAN Z., One-pot sol–gel synthesis of a phosphated TiO2 catalyst for conversion of monosaccharide, disaccharides, and polysaccharides to 5-hydroxymethylfurfural, New J. Chem., 2019, 43, 12483–12493.
  • [22] SATHASIVAM S., WILLIAMSON B.A., KAFIZAS A., ALTHABAITI S.A., OBAID A.Y., BASAHEL S.N., SCANLON D.O., CARMALT C.J., PARKIN I.P., Computational and experimental study of Ta2O5 thin films, J. Phys. Chem. C, 2017, 121 (1), 202–210.
  • [23] SATO M., SLAMOVICH E.B., WEBSTER T.J., Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania /poly (lactide-co-glycolide) sol–gel titanium coatings, Biomaterials, 2005, 26, 1349–1357.
  • [24] SHORVAZI S., KERMANI F., MOLLAZADEH S., Coating Ti6Al4V substrate with the triple-layer glass-ceramic compositions using sol–gel method; the critical effect of the composition of the layers on the mechanical and in vitro biological performance, J. Solgel Sci. Technol., 2020, 94, 743–753.
  • [25] SIU J.H., LI L.K., An investigation of the effect of surface roughness and coating thickness on the friction and wear behaviour of a commercial MoS2–metal coating on AISI 400C steel, Wear, 2000, 237, 283–287.
  • [26] STOCH A., JASTRZĘBSKI W., DŁUGOŃ E., Sol–gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V, J. Mol. Struct., 2005, 744, 633–640.
  • [27] SUN Y.S., CHANG J.H., HUANG H.H., Corrosion resistance and biocompatibility of titanium surface coated with amorphous tantalum pentoxide, Thin. Solid. Films, 2013, 528, 130–135.
  • [28] SUN Y.S., CHANG J.H., HUANG H.H., Using submicroporous Ta oxide coatings deposited by a simple hydrolysis–condensation process to increase the biological responses to Ti surface, Surf. Coat Tech., 2014, 259, 199–205.
  • [29] TADDEI P., TINTI A., REGGIANI M., In vivo bioactivity of titanium and fluorinated apatite coatings for orthopaedic implants: a vibrational study, J. Mol. Struct., 2003, 651, 427–431.
  • [30] TEPEHAN F.Z., GHODSI F.E., OZER N., Optical properties of sol–gel dip-coated Ta2O5 films for electrochromic applications, Sol Energy Mater. Sol Cells, 1999, 59, 265–275.
  • [31] TRIPATHY A., PRAMANIK S., MANNA A., AZRIN SHAH N.F., SHASMIN H.N., RADZI Z., ABU OSMAN N.A., Synthesis and characterizations of novel Ca-Mg-Ti-Fe-oxides-based ceramic nanocrystals and flexible film of polydimethylsiloxane composite with improved mechanical and dielectric properties for sensors, Sensors, 2016, 16, 292.
  • [32] WAN T., STYLIOS G.K., Effects of coating process on the surface roughness of coated fabrics, J. Text Inst., 2017, 108, 712–719.
  • [33] WOLF M.J., ROITSCH S., MAYER J., NIJMEIJER A., BOUWMEESTER H.J., Fabrication of ultrathin films of Ta2O5 by a sol–gel method, Thin Solid Films, 2013, 527, 354–357.
  • [34] XU J., KE BAO X., FU T., LYU Y., MUNROE P., XIE Z.H., In vitro biocompatibility of a nanocrystalline β-Ta2O5 coating for orthopaedic implants, Ceram. Int., 2018, 44 (5), 4660–4675.
  • [35] YU J., ZHAO X., ZHAO Q., Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method, Thin Solid Films, 2000, 379, 7–14.
  • [36] ZHANG P., LIN D., ZHU Y., In-situ high temperature laserinduced damage of sol-gel Ta2O5 films with different dual additives, Thin Solid Films, 2020, 693, 137723.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ae97dbf-7deb-47f6-9ec2-e0f68d3f5e4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.