Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Złożona macierz układów anten Mm-Wave do zastosowań 5G
Języki publikacji
Abstrakty
This work designs, simulates, and fabricates a millimeter-wave antenna array for a 5G base station to support the significant improvements that come with the new 5G technology. The work starts with 1x8 arrays with sizes of 64.21.2 mm² and 55x20.2 mm² for 28 and 38 GHz, respectively. The elements are then increased to 8x8 arrays with dimensions of 64x169 mm² for 28 GHz and 55x161.5 mm² for 38 GHz. The proposed design is further promoted to a 16x8 array antenna with dimensions of 74x255x0.508 mm³. This antenna configuration initially consists of an 8x8 series-fed array operating at 28 GHz and another 8x8 operating at 38 GHz, all implemented on a Rogers/RT 5880 substrate with εr=2.2. At 28 GHz and 38 GHz, the radiation efficiency was measured to be 97.6% and 96.8%, respectively, and the greatest actual gain was 24.7 dBi. Additionally, the antenna array significantly boosts gain. The antenna's performance spans a dual-band millimeter-wave spectrum operating at 28 38 GHz. Specifically, at 28 GHz, 8x8 arrays have a realized gain of 20.33 dBi, and at 38 GHz, the gain is 22.23 dBi. Moreover, for the antenna range, the model displays a symmetrical radiation pattern, and the side lobe level is diminished to -10.2 dB. Two simulation programs, MWSCST2020, and ANSYS HFSS19, are used to simulate these array antennas. The simulation results closely match the actual model performance. Furthermore, the antenna is measured using an Agilent R&S Z67 VNA.
W ramach tej pracy projektuje, symuluje i wytwarza układ anten wykorzystujących fale milimetrowe dla stacji bazowej 5G, aby wspierać znaczące ulepszenia wprowadzone w nowej technologii 5G. Prace rozpoczynają się od układów 1x8 o rozmiarach 64,21,2 mm² i 55x20,2 mm² odpowiednio dla 28 i 38 GHz. Elementy są następnie powiększane do macierzy 8x8 o wymiarach 64x169 mm² dla 28 GHz i 55x161,5 mm² dla 38 GHz. Proponowany projekt jest dalej promowany do anteny szeregowej 16x8 o wymiarach 74x255x0,508 mm³. Ta konfiguracja anteny początkowo składa się z układu zasilanego szeregowo 8x8 pracującego przy 28 GHz i kolejnego 8x8 pracującego przy 38 GHz, wszystkie zaimplementowane na podłożu Rogers/RT 5880 z εr=2,2. Dla częstotliwości 28 GHz i 38 GHz zmierzona efektywność promieniowania wyniosła odpowiednio 97,6% i 96,8%, a największe rzeczywiste wzmocnienie wyniosło 24,7 dBi. Dodatkowo układ anten znacznie zwiększa zysk. Wydajność anteny obejmuje dwuzakresowe widmo fal milimetrowych w paśmie 28–38 GHz. W szczególności przy 28 GHz macierze 8x8 mają zrealizowany zysk na poziomie 20,33 dBi, a przy 38 GHz zysk wynosi 22,23 dBi. Ponadto dla zasięgu anteny model wykazuje symetryczną charakterystykę promieniowania, a poziom listka bocznego jest obniżony do -10,2 dB. Do symulacji tych anten szeregowych służą dwa programy symulacyjne, MWSCST2020 i ANSYS HFSS19. Wyniki symulacji są ściśle zgodne z rzeczywistą wydajnością modelu. Ponadto antena jest mierzona za pomocą Agilent R&S Z67 VNA.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
17--22
Opis fizyczny
Bibliogr.40 poz., rys., tab.
Twórcy
autor
- Department of Electrical Engineering, The Egyptian Academy for Engineering and Advanced Technology (EAEAT)
autor
- Kuwait Technical College
autor
- Microstrip Department, Electronic research institute, El-Nuzha, Cairo, 11843, Egypt
autor
- Department of Electrical Engineering, Shoubra Faculty of Engineering Benha University, Cairo, 11629, Egypt
- Center for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Malacca, Malaysia
autor
- Center for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Malacca, Malaysia
autor
- Electronic and Communication Dept., Higher Institute of Engineering and Technology in New Damietta, Damietta 34517, Egypt
autor
- Department of Electrical Engineering, The Egyptian Academy for Engineering and Advanced Technology (EAEAT)
- Department of Electrical Engineering, Shoubra Faculty of Engineering Benha University, Cairo, 11629, Egypt
Bibliografia
- [1] Ali, W., Das, S., Medkour, H., & Lakrit, S. (2023). Planar dual-band 27/39 GHz millimeter-wave MIMO antenna for 5G applications. Microsystem Technologies, 27, 283-292. http://doi.org.10.2528/PIERL22101702.
- [2] Hirose, K., Tamura, Y., Tsugane, M., & Nakano, H.2022 Coplanar Series-Fed Spiral Antenna Arrays for Enlarged Axial Ratio Bandwidth. http://doi.org/10.2528/PIERL22100901.
- [3] Praveena Kati and Venkata Kishore Kothapudi , "High-Isolation and Side Lobe Level Reduction for Dual-Band Series-Fed Centre-Fed X/Ku Shared Aperture Binomial Array Antenna for Airborne Synthetic Aperture Radar Applications," Progress In Electromagnetics Research B, Vol. 101, 175-191, 2023.
- [4] Rania Hamdy Elabd, Ahmed Jamal Abdullah Al-Gburi, SAR assessment of miniaturized wideband MIMO antenna structure for millimeter wave 5G smartphones, Microelectronic Engineering,Volume 282,2023,112098.
- [5] Munir, M. E., Kiani, S. H., Savci, H. S., Marey, M., Khan, J., Mostafa, H., & Parchin, N. O. (2023). A Four Element Mm-Wave MIMO Antenna System with Wide-Band and High Isolation Characteristics for 5G Applications. Micromachines, 14(4), 776. https://doi.org/10.3390/mi14040776.
- [6] Kamal, M. M., Yang, S., Kiani, S. H., Anjum, M. R., Alibakhshikenari, M., Arain, Z. A., Limiti, E. (2021). Donut-shaped mmWave printed antenna array for 5G technology. Electronics, 10(12), 1415.
- [7] Swetha Velicheti Santosh Pavada Prudhivi Mallikarjuna Rao and Mosa Satya Anuradha , "Design of Conformal Log Periodic Dipole Array Antennas Using Different Shapes of Top Loadings," Progress In Electromagnetics Research M, Vol. 116, 91-102, 2023.
- [8] Chung, M. A., Chen, Y. H., & Meiy, I. P. (2023, February). Antenna-on-Chip for Millimeter Wave Applications Using CMOS Process Technology. In Telecom (Vol. 4, No. 1, pp. 146-164). MDPI. https://doi.org/10.3390/telecom4010010.
- [9] A. J. A. Al-Gburi, Z. Zakaria, I. M. Ibrahim, and E. Bt A. Halim, “Microstrip patch antenna arrays design for 5G wireless backhaul application at 3.5 GHz,” Lecture Notes in Electrical Engineering, Springer Singapore, 2022, pp. 77–88, doi: 10.1007/978-981-16- 9781-4_9.
- [10] Feng, S., Xin, X., & Chuxuan, R. (2022). 5G Millimeter Wave Endfire Array Antenna with Printed Inverted-F Structure. International Journal of Antennas and Propagation, 2022. https://doi.org/10.1155/2022/8940715.
- [11] Fokin, G., & Volgushev, D. (2023). Model for Interference Evaluation in 5G Millimeter-Wave Ultra-Dense Network with Location-Aware Beamforming. Information, 14(1), 40. https://doi.org/10.3390/info14010040.
- [12] Abdou, T. S., Saad, R., & Khamas, S. K. (2023). A Circularly Polarized mmWave Dielectric-Resonator-Antenna Array for Off-Body Communications. Applied Sciences, 13(3), 2002. https://doi.org/10.3390/app13032002.
- [13] Chen, Z., Zhang, W., & Wang, K. (2023). Single-Layer Interconnected Magneto-Electric Dipole Antenna Array for 5G Communication Applications. Electronics, 12(4), 922. https://doi.org/10.3390/electronics12040922.
- [14] Al-Gburi, A.J.A., Zakaria, Z., Ibrahim, I.M., Halim, E.B.A. (2022). Microstrip Patch Antenna Arrays Design for 5G Wireless Backhaul Application at 3.5 GHz. In: Zakaria, Z., Emamian, S.S. (eds) Recent Advances in Electrical and Electronic Engineering and Computer Science. Lecture Notes in Electrical Engineering, vol 865. Springer, Singapore. https://doi.org/10.1007/978-981-16-9781-4_9.
- [15] Al-Gburi, A.J.A.; Ibrahim, I.M.; Zakaria, Z.; Nazli, N.F.M. Wideband Microstrip Patch Antenna for Sub 6 GHz and 5G Applications. Przegląd Elektrotechniczny. 2021, 11, 26–29.
- [16] Ali, W. A., Ibrahim, A. A., & Ahmed, A. E. (2023). Dual-Band Millimeter Wave 2× 2 MIMO Slot Antenna with Low Mutual Coupling for 5G Networks. Wireless Personal Communications, 1- 18. https://doi.org/10.1007/s11277-023-10267-w.
- [17] Cao, T. N., Nguyen, M. T., Phan, H. L., Nguyen, D. D., Vu, D. L., Nguyen, T. Q. H., & Kim, J. M. (2023). Millimeter-Wave Broadband MIMO Antenna Using Metasurfaces for 5G Cellular Networks. International Journal of RF and Microwave Computer-Aided Engineering, 2023. https://doi.org/10.1155/2023/9938824.
- [18] C. R. Jetti et al., “Design and Analysis of Modified U-Shaped Four Element MIMO Antenna for Dual-Band 5G Millimeter Wave Applications,” Micromachines, vol. 14, no. 8, p. 1545, Jul. 2023, doi: 10.3390/mi14081545.
- [19] Ibrahim, I. M., Ahmed, M. I., Abdelkader, H. M., & Elsherbini, M. M. (2022). A Novel Compact High Gain Wide-Band Log Periodic Dipole Array Antenna for Wireless Communication Systems. Journal of Infrared, Millimeter, and Terahertz Waves, 1-23. https://doi.org/10.1007/s10762-022-00891-1.
- [20] Ikram, M., Sultan, K. S., Abbosh, A. M., & Nguyen-Trong, N. (2022). Sub-6 GHz and mm-Wave 5G Vehicle-to-Everything (5GV2X) MIMO Antenna Array. IEEE Access, 10, 49688-49695. https://doi.org/10.1109/ACCESS.2022.3172931.
- [21] Singh, M., Singh, S., & Islam, M. T. (2022). CSRR loaded high gained 28/38GHz printed MIMO patch antenna array for 5G millimeter wave wireless devices. Microelectronic Engineering, 262, 111829. https://doi.org/10.1016/j.mee.2022.111829.
- [22] Munir, M. E., Al Harbi, A. G., Kiani, S. H., Marey, M., Parchin, N. O., Khan, J., ... & Abd-Alhameed, R. A. (2022). A new mm-wave antenna array with wideband characteristics for next generation communication systems. Electronics, 11(10), 1560. https://doi.org/10.3390/electronics11101560.
- [23] A. J. A. Al-Gburi, I. B. M. Ibrahim, M. Y. Zeain and Z. Zakaria, "Compact Size and High Gain of CPW-Fed UWB Strawberry Artistic Shaped Printed Monopole Antennas Using FSS Single Layer Reflector," in IEEE Access, vol. 8, pp. 92697-92707, 2020, doi: 10.1109/ACCESS.2020.2995069.
- [24] Shareef, O. A., Sabaawi, A. M. A., Muttair, K. S., Mosleh, M. F., & Almashhdany, M. B. (2022). Design of multi-band millimeter wave antenna for 5G smartphones. Indonesian Journal of Electrical Engineering and Computer Science, 25(1), 382-387. https://doi.org/10.11591/ijeecs.v25.i1.pp382-387.
- [25] A. Ali et al., “A Compact MIMO Multiband Antenna for 5G/WLAN/WIFI-6 Devices,” Micromachines, vol. 14, no. 6, p. 1153, May 2023, doi: 10.3390/mi14061153.
- [26] T. Saeidi, A. J. A. Al-Gburi, and S. Karamzadeh, “A Miniaturized Full-Ground Dual-Band MIMO Spiral Button Wearable Antenna for 5G and Sub-6 GHz Communications,” Sensors, vol. 23, no. 4, p. 1997, Feb. 2023, doi: 10.3390/s23041997.
- [27] A. Khabba et al., "A new miniaturized wideband self-isolated two-port MIMO antenna for 5G millimeter-wave applications", TELKOMNIKA Telecommunication Computing Electronics and Control, vol. 21, no. 3, pp. 630-630, Feb. 2023.
- [28] Shehata, R. E. A., Elboushi, A., Hindy, M., & Elmekati, H. (2022). Metamaterial inspired LPDA MIMO array for upper band 5G applications. International Journal of RF and Microwave Computer-Aided Engineering, 32(8), e23212. https://doi.org/10.1002/mmce.23212.
- [29] Xue, H., Shen, Z., Wu, L., Rong, Y., & Peng, S. (2023). A low-profile planar end-fire broadband antenna with wide beamwidth. IET Microwaves, Antennas & Propagation. https://doi.org/10.1049/mia2.12346.
- [30] Wang, X., Cao, H. R., Yan, Y. M., Yang, X. H., Zong, Z. Y., & Wu, W. (2023). Design of broadband dual-polarized reconfigurable frequency selective surface based on dual-branch parallel circuit model. IET Microwaves, Antennas & Propagation. https://doi.org/10.1049/mia2.12356.
- [31] Tanabe, M., & Nakano, H. (2023). A low-profile wideband spiral antenna with multiple stopbands. IET Microwaves, Antennas & Propagation. https://doi.org/10.1049/mia2.12351.
- [32] Hwang, I.J., Oh, J.I., Jo, H.W., Kim, K.S., Yu, J.W. and Lee, D.J., 2021. 28 GHz and 38 GHz dual-band vertically stacked dipole antennas on flexible liquid crystal polymer substrates for millimeter-wave 5G cellular handsets. IEEE Transactions on Antennas and Propagation, 70(5), pp.3223-3236. http://doi.org/10.1109/tap.2021.3137234..
- [33] Nahas, M., 2022. A Super High Gain L-Slotted Microstrip Patch Antenna For 5G Mobile Systems Operating at 26 and 28 GHz. Engineering, Technology & Applied Science Research, 12(1), pp.8053-8057. https://doi.org/10.48084/etasr.4657.
- [34] Chen, Z., Zhang, W. and Wang, K.X., 2023. A multi-port interconnected magneto-electric dipole antenna array for 5G applications. Authorea Preprints. https://doi.org/10.1049/ell2.12742.
- [35] El Halaoui, M., Canale, L., Asselman, A., & Zissis, G. (2020, December). Dual-Band 28/38 GHz Inverted-F Array Antenna for Fifth Generation Mobile Applications. In Proceedings (Vol. 63, No. 1, p. 53). MDPI. https://doi.org/10.3390/proceedings2020063053.
- [36] Sehrai, D. A., Khan, J., Abdullah, M., Asif, M., Alibakhshikenari, M., Virdee, B., & Falcone, F. (2023). Design of high gain base station antenna array for mm-wave cellular communication systems. Scientific Reports, 13(1), 4907. https://doi.org/10.1038/s41598-023- 31728-z.
- [37] Joseph, S. D., & Ball, E. A. (2023). Series-Fed Millimeter-Wave Antenna Array Based on Microstrip Line Structure. IEEE Open Journal of Antennas and Propagation, 4, 254-261. https://doi.org/10.1109/OJAP.2023.3248610.
- [38] Ali, W.A.E., Ibrahim, A.A. & Ahmed, A.E. Dual-Band Millimeter Wave 2 × 2 MIMO Slot Antenna with Low Mutual Coupling for 5G Networks. Wireless Pers Commun 129, 2959–2976 (2023). https://doi.org/10.1007/s11277-023-10267-w.
- [39] Yanzhi, F, Yixiang, L, &Changda, S. (2023). A Low Cross-Polarization Microstrip Antenna Array for Millimeter Wave Applications. International Journal of Antenna and Propagation, 7622014, https://doi.org/10.1155/2023/7622014.
- [40] Aghoutane, B., Das, S., Ghzaoui, M.E., Madhav, B.T.P. and El Faylali, H., 2022. A novel dual band high gain 4-port millimeter wave MIMO antenna array for 28/37 GHz 5G applications. AEU-International Journal of Electronics and Communications, 145, p.154071. https://doi.org/10.1016/j.aeue.2021.154071.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ae7519c-3a17-478e-abfc-4e196ceab9df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.