Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, a stable and effective magnetically recoverable nanocatalyst was prepared by coating Fe 3O 4 nanoparticles with SiO 2, followed by functionalization with N-(2-aminoethyl)- 3-aminopropyltrimethoxysilane (AEPTMS) and produce Schiff base ligand to linkage Ru(OTf) 2 onto the surface. The nanocatalyst was characterized using various techniques such as FT-IR spectroscopy, SEM, TEM, and VSM to confirm its successful synthesis. The nanocatalyst was used for the trimethylsilylation of various alcohols (primary, secondary, and tertiary alcohols) using hexamethyldisilazane as a silylating agent in dichloromethane at room temperature. The reaction proceeded quickly with a protection time of only 90 seconds, which is a remarkable advantage of this nanocatalyst. The turnover frequency (TOF) values of the catalytic system were estimated to be 1869 h -1. The use of this nanocatalyst offers many advantages, such as excellent yield, catalyst reusability, high acidity, and strong magneticp roperties. These advantages make it a fascinating candidate for green chemistry principles. The simple reprocessing procedure and quick response times are also additional benefits of this nanocatalyst. Overall, this study provides a promising approach for the facile preparation of a stable and effective magnetically recoverable nanocatalyst that can be utilized for the trimethylsilylation of alcohols. The exceptional properties of this catalyst make it an attractive candidate for practical applications in the field of catalysis.
Rocznik
Tom
Strony
art. no. e52
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- Young Researchers and Elite Club, Iranshahr Branch, Islamic Azad University, Iranshahr, Iran
autor
- Department of Chemical Engineering, Iranshahr Branch, Islamic Azad University, Iranshahr, Iran
Bibliografia
- 1. Abri A., Ranjdar S., 2014. Preparation of nano silica supported sodium hydrogen sulfate: As an efficient catalyst for the trimethyl, triethyl and t-butyldimethyl silylations of aliphatic and aromatic alcohols in solution and under solvent-free conditions. J. Chinese Chem. Soc., 61, 929–934. DOI: 10.1002/jccs.201300586.
- 2. Al-Anazi A., 2022. Iron-based magnetic nanomaterials in environmental and energy applications: a short review. Curr. Opin. Chem. Eng., 36, 100794. DOI: 10.1016/j.coche.2022.100794.
- 3. Arnodo D., De Nardo E., Ghinato S., Baldino, S., Blangetti, M., Prandi, C., 2023. A mild, efficient and sustainable tetrahydropyranylation of alcohols promoted by acidic natural deep eutectic solvents. ChemSusChem, 16, e202202066. DOI: 10.1002/cssc.202202066.
- 4. Bhole R., Gonsalves D., Murugesan G., Narasimhan M.K., Srinivasan N.R., Dave N., Varadavenkatesan T., Vinayagam R., Govarthanan M., Selvaraj R., 2022. Superparamagnetic spherical magnetite nanoparticles: synthesis, characterization and catalytic potential. Appl. Nanosci., 13, 6003–6014. DOI: 10.1007/s13204-022-02532-4.
- 5. Buldurun K., Özdemir M., 2020. Ruthenium (II) complexes with pyridine-based Schiff base ligands: Synthesis, structural characterization and catalytic hydrogenation of ketones. J. Mol. Struct., 1202, 127266. DOI: 10.1016/j.molstruc.2019.127266.
- 6. Changmai B., Rokhum L., 2020. Nanostructured catalysts in the protection and deprotection of hydroxyl and thiol groups, In: Sudarsanam P., Singh L. (Eds.), Advanced heterogeneous catalysts Volume 1: Applications at the nano-scale. ACS Symposium Series 1359. American Chemical Society, Washington, DC, 129–150. DOI: 10.1021/bk-2020-1359.ch004.
- 7. Chen D., Han C., 2022. An alkoxo-bridged dinuclear rutheniumschiff base scomplex: Synthesis, structure and catalytic reactivity. Inorg. Chem. Commun., 142, 109595. DOI: 10.1016/j.inoche.2022.109595.
- 8. Chołuj A., Nogaś W., Patrzałek M., Krzesiński P., Chmielewski M.J., Kajetanowicz A., Grela K., 2020. Preparation of ruthenium olefin metathesis catalysts immobilized on MOF, SBA-15, and 13X for probing heterogeneous boomerang effect. Catalysts, 10, 438. DOI: 10.3390/catal10040438.
- 9. Gonzalez-Carrillo G., Gonzalez J., Emparan-Legaspi M.J., Lino-Lopez G.J., Aguayo-Villarreal I.A., Ceballos-Magaña S.G., Martinez-Martinez F.J., Muñiz-Valencia R., 2020. Propylsulfonic acid grafted on mesoporous siliceous FDU-5 material: A high TOF catalyst for the synthesis of coumarins via Pechmann condensation. Microporous Mesoporous Mater., 307, 110458. DOI:10.1016/j.micromeso.2020.110458.
- 10. Inoue H., Tachibana T., Bito T., Arima J., 2023. Acetylation of amines and alcohols catalyzed by acetylcholinesterase from Pseudomonas aeruginosa PAO1. Enzyme Microb. Technol., 165, 110208. DOI: 10.1016/j.enzmictec.2023.110208
- 11. Kamalzare M., Ahghari M.R., Bayat M., Maleki A., 2021. Fe3O4@chitosan-tannic acid bionanocomposite as a novel nanocatalyst for the synthesis of pyranopyrazoles. Sci. Rep., 11, 20021. DOI: 10.1038/s41598-021-99121-2.
- 12. Karimi B., Golshani B., 2000. Mild and highly efficient method for the silylation of alcohols using hexamethyldisilazane catalyzed by iodine under nearly neutral reaction conditions. J. Org. Chem., 65, 7228–7230. DOI: 10.1021/jo005519s.
- 13. Katsuki T., 1995. Catalytic asymmetric oxidations using optically active (salen)manganese(III) complexes as catalysts. Coord. Chem. Rev., 140, 189–214. DOI: 10.1016/0010-8545(94) 01124-T.
- 14. Kazemi M., Shiri L., 2022. Ionic liquid immobilized on magnetic nanoparticles: A nice and efficient catalytic strategy in synthesis of heterocycles. J. Synth. Chem., 1, 1–7. DOI: 10.22034/jsc.2022.149201.
- 15. Koc Z.E., Ucan H.I., 2007. Complexes of iron(III) salen and saloph Schiff bases with bridging 2,4,6-tris(2,5-dicarboxy phenylimino-4-formylphenoxy)-1,3,5-triazine and 2,4,6-tris(4-carboxyphenylimino-4′-formylphenoxy)-1,3,5-triazine. Transit. Met. Chem., 32, 597–602. DOI: 10.1007/s112 43-007-0213-7.
- 16. Lalonde M., Chan T.H., 1985. Use of organosilicon reagents as protective groups in organic synthesis. Synthesis, 1985, 817–845. DOI: 10.1055/s-1985-31361.
- 17. Leckie L., Mapolie S.F., 2019. Triazole complexes of ruthenium immobilized on mesoporous silica as recyclable catalysts for octane oxidation. Catal. Commun., 131, 105803. DOI: 10.1016/j.catcom.2019.105803.
- 18. Lv B., Lei C., Ren F., Wang M., Hu, F., Meng S., Yang Y., Yang Z., Lei Z., 2020. Asymmetric hydrogenation of acetophe-none catalyzed by chirally modified ruthenium nanoparticles supported on carbon nanotubes. ChemistrySelect, 5, 11803–11810. DOI: 10.1002/slct.202003232.
- 19. Martin J.S., Zeng X., Chen X., Miller C., Han C., Lin Y., Yamamoto N., Wang X., Yazdi S., Yan Y., Beard M.C., Yan Y., 2021. A nanocrystal catalyst incorporating a surface bound transition metal to induce photocatalytic sequential electron transfer events. J. Am. Chem. Soc., 143, 11361–11369. DOI: 10.1021/jacs.1c00503.
- 20. Mehdigholami S., Koohestanian E., 2023. Fe3O4@SiO2/AEPTMS/Fe (OTf)3: An efficient superparamagnetic nanocatalyst for the protecting of alcohols. J. Part. Sci. Technol., 9, 1–9. DOI: 10.22104/jpst.2023.6188.1224.
- 21. Miceli M., Frontera P., Macario A., Malara A., 2021. Recovery/reuse of heterogeneous supported spent catalysts. Catalysts, 11, 591. DOI: 10.3390/catal11050591.
- 22. Nag S., Gupta P., Butcher R.J., Bhattacharya S., 2004. Unprecedented migration of a methyl group in 2-(2‘,6‘-dimethylphenylazo)-4-methylphenol mediated by ruthenium. In.org. Chem. 43, 4814–4816. DOI: 10.1021/ic049494h.
- 23. Nagajothi D., Maheswari J., 2021. Synthesis, characterization and antimicrobial activity of Schiff base ligand metal complexes. GIS Sci. J., 8(1), 1314–1326.
- 24. Premkumar M., Vijayan P., Venkatachalam G., 2019. Half-sandwich Ruthenium(II) Schiff base complexes: Synthesis, characterization and effective catalysts for one-pot conversion of aldehydes to amides. J. Organomet. Chem., 902, 120964. DOI: 10.1016/j.jorganchem.2019.120964.
- 25. Rahmanzadeh A., Daneshvar N., Shirini F., Tajik H., 2021. Comparison of the efficiency of two dicationic ionic liquids catalysts based on perchloric acid for the protection of alcohols. J. Iran. Chem. Soc., 18, 3295–3302. DOI: 10.1007/s13738-021-02267-z.
- 26. Sartori G., Ballini R., Bigi F., Bosica G., Maggi R., Righi P., 2004. Protection (and deprotection) of functional groups in organic synthesis by heterogeneous catalysis. Chem. Rev., 104, 199–250. DOI: 10.1021/cr0200769.
- 27. Shalini P., Deepanraj B., Vijayalakshmi S., Ranjitha J., 2023. Synthesis and characterisation of lipase immobilised magnetic nanoparticles and its role as a catalyst in biodiesel production. Mater. Today Proc., 80, 2725–2730. DOI: 10.1016/j.matpr.2021.07.027.
- 28. Singh A., Barman P., 2021. Recent advances in Schiff base ruthenium metal complexes: Synthesis and applications. Top. Curr. Chem., 379, 1–71. DOI: 10.1007/s41061-021-00342-w.
- 29. Skrodzki M., Patroniak V., Pawluć P., 2021. Schiff base cobalt(II) complex-catalyzed highly Markovnikov-selective hydrosilylation of alkynes. Org. Lett., 23, 663–667. DOI: 10.1021/acs.orglett.0c03721.
- 30. van Melis C.G.W., Penny M.R., Garcia A.D., Petti A., Dobbs A.P., Hilton S.T., Lam K., 2019. Supporting-electrolyte-free electrochemical methoxymethylation of alcohols using a 3D-printed electrosynthesis continuous flow cell system. ChemElectroChem, 6, 4144–4148. DOI: 10.1002/celc.201900815.
- 31. Wan P.J., Dowd M.K., Thomas A.E., Butler B.H., 2007. Trimethylsilyl derivatization/gas chromatography as a method to determine the free fatty acid content of vegetable oils. J. Am. Oil Chem. Soc., 84, 701–708. DOI: 10.1007/s11746-007-1101-1.
- 32. Wang A., Sudarsanam P., Xu Y., Zhang H., Li H., Yang S., 2020. Functionalized magnetic nanosized materials for efficient biodiesel synthesis via acid–base/enzyme catalysis. Green Chem., 22, 2977–3012. DOI: 10.1039/D0GC00924E.
- 33. Wang C., Karmakar B., Awwad N.S., Ibrahium H.A., El-kott A.F., Abdel-Daim M.M., Oyouni A.A.A., Al-Amer O., Batiha G.E.-S., 2022. Bio-supported of Cu nanoparticles on the surface of Fe3O4 magnetic nanoparticles mediated by Hibiscus sabdariffa extract: Evaluation of its catalytic activity for synthesis of pyrano[3,2-c]chromenes and study of its anti-colon cancer properties. Arab. J. Chem., 15, 103809. DOI: 10.1016/j.arabjc.2022.103809.
- 34. Wuts P.G.M., Greene T.W., 2006. Greene’s protective groups in organic synthesis. John Wiley & Sons, Inc., 24-222. DOI: 10.1002/0470053488.
- 35. Xia S.-P., Ding G.-R., Zhang R., Han L.-J., Xu B.-H., Zhang S.-J., 2021. Ruthenium complex immobilized on supported ionic-liquid-phase (SILP) for alkoxycarbonylation of olefins with CO2. GreenChem., 23, 3073–3080. DOI: 10.1039/D0GC04386A
- 36. Yao H., Wang Y., Razi M.K., 2021. An asymmetric Salamo-based Zn complex supported on Fe3O4 MNPs: a novel heterogeneous nanocatalyst for the silyl protection and deprotection of alco- hols under mild conditions. RSC Adv., 11, 12614–12625. DOI: 10.1039/D1RA01185E.
- 37. You J., Wang L., Zhao Y., Bao W., 2021. A review of amino- functionalized magnetic nanoparticles for water treatment: Fea- tures and prospects. J. Cleaner Prod., 281, 124668. DOI: 10.1016/j.jclepro.2020.124668.
- 38. Zareyee D., Ghandali M.S., Khalilzadeh M.A., 2011. Sulfonated ordered nanoporous carbon (CMK-5-SO3H) as an efficient and highly recyclable catalyst for the silylation of alcohols and phenols with hexamethyldisilazane (HMDS). Catal. Lett., 141, 1521–1525. DOI: 10.1007/s10562-011-0621-3.
- 39. Zolfigol M.A., Sajjadifar S., Ghorbani-Choghamarani A., Tami F., 2018. Application of a novel nano-immobilization of ionic liquid on an MCM-41 system for trimethylsilylation of alcohols and phenols with hexamethyldisilazane. Res. Chem. Intermed., 44, 7093–7106. DOI: 10.1007/s11164-018-3544-4.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ae3f3b0-eb6d-4693-815f-153c8683c815
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.