PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of magnetic field on damping ability of magnetorheological damper during hard turning

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tool vibration is a frequent problem in the manufacturing industry where metal cutting operation takes place. It affects the surface finish of the work piece, tool life, and produce irritating noise. In order to restrain tool vibration in metal cutting, it is necessary to develop and analyze suitable methods which increases stability and also improves the cutting performance. Magnetorheological damper has received great attention due to their ability to reversibly change from a free flowing, linear, viscous liquid to a semi-solid when exposed to magnetic field in just few milliseconds and also found to be effective on suppressing tool vibration. The present investigation aims at studying the effect of magnetic field on the damping abilities of the magnetorheological (MR) damper during hard turning operation. MR damper was characterized and the effect of magnetic field on damping ability of MR damper and cutting performances like tool vibration, cutting force, cutting temperature, tool wear and surface roughness were analyzed. From the result, it was observed that direction of magnetic field parameter on magnetorheological damper reduces tool vibration effectively and brought forth better cutting performance.
Rocznik
Strony
433--443
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical Sciences, Karunya University, Coimbatore 641114, Tamil Nadu, India
  • Principal, Nehru College of Engineering and Research Centre, Pampady, Thrissur 680597, Kerala, India
  • School of Mechanical Sciences, Karunya University, Coimbatore 641114, Tamil Nadu, India
autor
  • School of Mechanical Sciences, Karunya University, Coimbatore 641114, Tamil Nadu, India
Bibliografia
  • [1] F. Taylor, On the art of cutting metals, Transactions of ASME 28 (1907).
  • [2] R.N. Arnold, The mechanism of tool vibration in the cutting of steel, Proceedings of the Institution of Mechanical Engineers 154 (1946) 261-284.
  • [3] M. Arizmendi, F.J. Campa, J. FemAndez, L.N. Lcepes de Lacalle, A. Gil, E. Bilbao, F. Veiga, A. Lamikiz, Model for surface topography prediction in peripheral milling considering tool chatter, CIRP Annals - Manufacturing Technology 58 (1) (2009) 93-96.
  • [4] A.K. Ghani, I.A. Choudhury, Husni, Study of tool life, surface roughness and chatter in machining nodular cast iron with ceramic tool, Journal of Materials Processing Technology 127 17-22.
  • [5] Y. Altintas, Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Chatters and CNC Design, Cambridge University Press, Cambridge, 2000.
  • [6] Harris, A. Piersol, Shock and Chatter Handbook, McGraw Hill Publication, New York, 2002.
  • [7] M. Wiercigroch, E. Budak, Sources of non-linear, chatter generation & suppression in metal cutting, philosophical transactions, Mathematical, Physical and Engineering Sciences 359 (2001) 663-693.
  • [8] M. Siddhpura, R. Paurobally, A review of chatter vibration research in turning, International Journal of Machine tools & Manufacture 61 (May) (2012) 27-47.
  • [9] Z. Parlak, T. Engin, I. Calii, Optimal design of MR damper via finite element analysis of fluid dynamic & magnetic field, Mechatronics 22 (May) (2012) 890-903.
  • [10] Lord Corporation, http://mutualhosting.com/(lordfulfillment/ upload7PB7138.pdf (accessed May 2011).
  • [11] D. Sathianarayanan, L. Karunamoorthy, J. Srinivasan, G.S. Kandasami, K. Palanikumar, Chatter suppression in boring operation using magnetorheological fluid damper, Materials and Manufacturing Processes 23 (4) (2008) 329-335.
  • [12] D. Mei, T. Kong, A.J. Shih, Z. Chen, Magnetorheological fluid- controlled boring bar for chatter suppression, Journal of Materials Processing Technology 209 (2009) 1861-1870.
  • [13] P. Sam Paul, A.S. Varadarajan, Effect of magnetorheological fluid damper on surface finish during hard turning with minimal fluid application, in: International Conference on Recent Advances in Materials and Processing-RAMP 2011, PSG College of Technology, Coimbatore 23-24 December, 2011, pp. 20-25.
  • [14] J.M. Ginder, L.C. Davis, L.D. Elie, Rheology of magnetorheological fluids: models measurements, International Journal of Modem Physics B 2 (1996) 3293-3303.
  • [15] P. Sam Paul, A.S. Varadarajan, Effect of magnetorheological fluid damper on tool chatter during hard turning with minimal fluid application, Frontiers in Mechanical Engineering 7 (4) 410-416.
  • [16] M. Schwartz, Encyclopaedia of Smart Materials, John Wiley & Sons, New York, 2002.
  • [17] P. Sam Paul, A.S. Varadarajan, ANN assisted sensor fusion model to predict tool wear during hard turning with minimal fluid application, International Journal of Machining and Machinability of Materials 13 (4) (2013) 398-413.
  • [18] P. Sam Paul, A.S. Varadarajan, A multi-sensor fusion model based on artificial neural network to predict tool wear during hard turning, Proceedings of the Institution of Mechanical Engineers - Part B: Journal of Engineering Manufacture 226.
  • [19] Kistler, Guide to the Measurement of Force, The Institute of Measurement and Control, London, 1998, ISBN 28 0 904457 1.
  • [20] K.S. Moon, J.W. Sutherland, The origin interpretation of spatial frequencies in a turned surface profile, Journal of Engineering for Industry 116 (3) (1994) 340-347.
  • [21] R. Kesavan, B. Vijaya Ramnath, Machine Tools, Laxmi Publications, New Delhi, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6aca7958-34e1-4c8c-919b-58bbecab71fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.