PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal Diffusivity Prediction from P-Wave Velocity and Porosity Assessment for Sandstone Reservoirs

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przewidywanie dyfuzyjności termicznej na podstawie prędkości P-fal i oceny porowitości dla zbiorników piaskowca
Języki publikacji
EN
Abstrakty
EN
Petrophysical heterogeneities of sandstone reservoirs which are generated by rock internal variability resounded to the magnitude of the rock thermal diffusivity. This is expected mostly to variation of rock density, porosity, reservoir temperature and its thermal conductivity. New methodology for calculating thermal diffusivity in a sandstone rock formation is intended and effectively employed some laboratory thermophysical measurements for sandstone reservoirs. The proposed petrophysical model establishes thermal diffusivity if both the effective porosity and acoustic (compressional) wave velocity of the rock are known. Some reliable petrophysical models (El Sayed, 2011 and Ahmed, 2019) concerned to both the Baharyia (Egypt) and Szolnok (Hungary) sandstone formations are used with only some modifications to build an innovative nomography. It permitted precise quantification and determination of the thermal diffusivity for both dry and saturated sandstone samples normalized to reservoir temperature (300K-1060 K). Verification of the proposed model is achieved with applying study cases of laboratory measured thermophysical properties (i.e., porosity, thermal diffusivity/or conductivity and longitudinal wave velocity) for different sandstone types, geological ages and geographic locations. A regression analysis of thermal diffusivity between laboratory measured and predicted data for dry (Ҡ-dry) rock samples yield a plausible coefficient of correlations as (R =0.73; 0.86 and 0.98) for three different sandstones obtained from Permo-Carboniferous in Germany (Aretz, 2016) and of dissimilar geologic age in Switzerland (Pimienta, 2018) respectively while, the average standard error equals 0.011. Then again, the laboratory measured and predicted thermal diffusivity (Ҡ-sat) of saturated samples display an appropriate coefficient of correlation (R = 0.76) and average standard error (0.0089).
Rocznik
Strony
115--123
Opis fizyczny
Bibliogr. 29 poz., wykr.
Twórcy
  • Department of Geophysics, Faculty of Sciences, Ain Shams University, Cairo-Egypt
  • Department of Exploration (Core Lab.) Egyptian Petroleum Research Institute-Egypt
Bibliografia
  • 1. Samaei, M., Massalow, T., Abdolhosseinzadeh, A., Yagiz, S., Muayad, M., Sabri, S.,2022. Application of Soft Computing Techniques for Predicting Thermal Conductivity of Rocks. MDPI,Basel,Switzerland.Appl.Sci.2022,12,9187.https://doi.org/10.3390/app12189187
  • 2. Chi Chen, Chuanqing Zhu, Baoshou Zhang, Boning Tang, Kunyu Li, Wenzheng Li, and Xiaodong Fu.,2021. Effect of Temperature on the Thermal Conductivity of Rocks and Its Implication for In Situ Correction. Hindawi Geofluids Volume 2021, Article ID 6630236, 12 pages https://doi.org/10.1155/2021/6630236
  • 3. Pimienta, L. Klitzsch, N., Clauser, C.,2018. Comparison of thermal and elastic properties of sandstones: Experiments and theoretical insights. Geothermics76 (2018) 60-73, https://doi.org/10.1016/j.geothermics.2018.06.005
  • 4. Shakirov, A., Chekhonin E., Popov, Yu. Popov, E., Spasennykh, M., Zagranovskaya, D., Serkin, D.,2021. Rock thermal properties from well-logging data accounting for thermal anisotropy.Geothermics92(2021) 102059. https://doi.org/10.1016/j.geothermics.2021.102059
  • 5. Goss, R., Combs, J., Timur, A., 1975. Prediction of thermal conductivity in rocks from other physical parameters and from standard geophysical well logs. In: SPWLA 16th Annual Logging Symposium. SPWLA-1975-MM, p. 21.
  • 6. Vacquier, V., Mathieu, Y., Legendre, E., Blondin, E., 1988. Experiment on estimating thermal conductivity of sedimentary rocks from oil well logging. Int. J. Rock Mech. Min. Sci. (1997) 26 (2), 63–63.
  • 7. Blackwell, D., Steele, J., 1989. Thermal Conductivity of Sedimentary Rocks: Measurement and Significance. Springer. https://doi.org/10.1007/978-1-4612-
  • 8. Leu, W., Rybach, L., Scharli, U., Megel, T., Keller, B., 1999. New thermal property data base of the Swiss Molasse Basin sediments: integrating wireline logs, cores and cuttings. Proc. Eur. Geothermal- Conf. Baset 2, 213–219.
  • 9. Fuchs, S., Balling, N., Forster, ¨ A., 2015. Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs. Geophysics. J. Int. 203 (3), 1977–2000. https://doi.org/10.1093/gji/ggv403
  • 10. Zimmerman, R.W., 1989. Thermal conductivity of fluid-saturated rocks. J. Petrol. Sci. Eng. 3 (3), 219–227
  • 11. Beardsmore, G., Cull, J., 2001. Crustal Heat Flow: A Guide to Measurement and Modelling. Cambridge University Press, p. 324. https://doi.org/10.1017/ CBO9780511606021.
  • 12. Hartmann, A., Rath, V., Clauser, C., 2005. Thermal conductivity from core and well log data. J. Rock. Mech. Min. Sciences 42 (7), 1042–1055.
  • 13. Clauser, C., 2020. Thermal storage and transport properties of rocks, II: thermal conductivity and diffusivity. In: Gupta, H.K. (Ed.), Encyclopedia of Solid Earth Geophysics. Springer International Publishing, Cham, pp. 1–20. https://doi.org/ 10.1007/978-3-030-10475-7_67-1.
  • 14. Ali, S.F.,2003. Heavy oil—ever more mobile J. Pet. Sci. Eng. 37, 5 (2003).
  • 15. Abdulagatov, I. Abdulagatov, Z., Grigor’ev, B., Kallaev, S., Omarov, Z., Bakmaev, A., Ramazanova, A., Rabadanov, K., 2021. Thermal Diffusivity, Heat Capacity, and Thermal Conductivity of Oil Reservoir Rock at High Temperatures. International Journal of Thermo-physics (2021) 42:135. https://doi.org/10.1007/s10765-021-02878-x
  • 16. El Sayed, A.M.A., et al., 2019. IOP Conf. Ser.: Earth Environ. Sci. 221, 012046.
  • 17. El Sayed, A.M.A., 2011. Thermophysical study of sandstone reservoir rocks. J. Pet. Sci. Eng. 76, 138–147.
  • 18. Keelan, D.K., 1972. Core Analysis Techniques and Applications. SPE-4160. Nov. pp. 72.
  • 19. El Sayed, A.M.A.,1976. Petrophysical studies on core samples from Um El Yusr oil field, Eastern Desert, Egypt. M.Sc. Thesis, Ain Shams University, Cairo, P.1-137.
  • 20. API, 1998. Recommended Practices for Core Analysis, Recommended Practice 40, 2nd ed. API Publishing Services, Washington.
  • 21. Clauser, C., Griess Haber, E., Neugebauer, H.J., 2002. Decoupled thermal and mantle helium anomalies: implication for the transport regime in continental regime rift zones. J. Geophysics. Res. 107, 2269. https://doi.org/10.1029/2001JB000675.
  • 22. Fuchs, S., Förster, A., 2010. Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin. Chimei der Erde 70 (Suppl. 3), 13–22.
  • 23. Tong, F., Jing, L., Zimmerman, R.W., 2010. A fully coupled thermo-hydro-mechanical model for simulating multiphase flow, deformation and heat transfer in buffer material and rock masses. Int. J. Rock Mech. Min
  • 24. Jorand, R., Fehr, A., Koch, A., Clauser, C., 2011. Study of the variation of thermal conductivity with water saturation using nuclear magnetic resonance. J. geophysics. Res.: Solid Earth 116, B8.
  • 25. Mielke, P., Weinert, S., Bignall, G., Sass, I., 2016. Thermo-physical rock properties of greywacke basement rock and intrusive lavas from the Taupo Volcanic Zone, New Zealand. J. Volcano. Geotherm. Res. 324, 179–189.
  • 26. Mielke, P., Bär, K., Sass, I., 2017. Determining the relationship of thermal conductivity and compressional wave velocity of common rock types as a basis for reservoir characterization. J. Appl. geophysics. 140, 135–144.
  • 27. El Sayed, A. M. A., El Sayed, N.A.,2019. Thermal conductivity calculation from P-wave velocity and porosity assessment for sandstone reservoir rocks. Geothermics. 82 (2019) 91-96. https://doi.org/10.1016/j.geothermics.2019.06.001.
  • 28. Ahmed, Z., Yves, G., Marc, D., Kamel, B., 2019. A Preliminary study of relationships between thermal conductivity and petrophysical parameters in Hamra Quartzites reservoir, Hassi Messaoud field (Algeria). J. Afr. Earth Sci. 151, 461–471. https://doi. org/10.1016/j.jafrearsci.2019.01.005.
  • 29. Aretz A., Bär K., Götz A., Sass, I., 2016. Outcrop analogue study of Permo-Carboniferous geothermal sandstone reservoir formations (northern Upper Rhine Graben, Germany): impact of mineral content, depositional environment and diagenesis on petrophysical properties. Int J Earth Sci (Geol Rundsch) (2016) 105:1431–1452 DOI 10.1007/s00531-015-1263-2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6aca729a-2614-4a78-bd3b-dd6fd2c22ceb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.