PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The human iron exporter ferroportin. Insight into the transport mechanism by molecular modeling

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ferroportin, a membrane protein belonging to the major facilitator superfamily of transporters, is the only vertebrate iron exporter known so far. Several ferroportin mutations lead to the so-called ferroportin disease or type 4 hemochromatosis, characterized by two distinct iron accumulation phenotypes depending on whether the mutation affects the activity of the protein or its degradationdługo pathway. Through extensive molecular modeling analyses using the structure of all known major facilitator superfamily members as templates, multiple structural models of ferroportin in the three mechanistically relevant conformations (inward open, occluded, and outward open) have been obtained. The best models, selected on the ground of experimental data available on wild-type and mutant ferroportion, provide for the first time a prediction at the atomic level of the dynamics of the transporter. Based on these results, a possible mechanism for iron export is proposed.
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 58 poz., rys.
Twórcy
autor
  • Department of Sciences, Roma Tre University, Rome, Italy
  • Department of Biochemical Sciences, Sapienza University of Roma, Rome, Italy
autor
  • Department Biosciences and Territory, University of Molise, Pesche, Italy
  • Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Rome, Italy
Bibliografia
  • 1. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 2000;5:299–309.
  • 2. Muckenthaler MU, Galy B, Hentze MW. Systemic iron homeostasis and the iron responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 2008;28:197–213.
  • 3. Ganz T. Hepcidin and iron regulation, 10 years later. Blood 2011;117:4425–33.
  • 4. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004;306:2090–3.
  • 5. Rochette L, Gudjoncik A, Guenancia C, Zeller M, Cottin Y, Vergely C. The iron-regulatory hormone hepcidin: a possible therapeutic target? Pharmacol Ther 2014;146:35–52.
  • 6. Luo X, Jiang Q, Song G, Liu YL, Xu ZG, Guo ZY. Efficient oxidative folding and site-specific labeling of human hepcidin to study its interaction with receptor ferroportin. FEBS J 2012;279:3166–75.
  • 7. De Domenico I, Ward DM, Nemeth E, Vaughn MB, Musci G, Ganz T, et al. The molecular basis of ferroportin linked hemochromatosis. Proc Natl Acad Sci USA 2005;102:8955–60.
  • 8. Courselaud B, Pigeon C, Inoue Y, Inoue J, Gonzalez FJ, Leroyer P, et al. C/EBPregulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism. Crosstalk between C/EBP pathway and iron metabolism. J Biol Chem 2002;277:41163–70.
  • 9. Pietrangelo A. The ferroportin disease. Clin Liver Dis 2014;3: 99–100.
  • 10. Le Gac G, Ka C, Joubrel R, Gourlaouen I, Lehn P, Mornon JP, et al. Structure-function analysis of the human ferroportin iron exporter (SLC40A1): effect of hemochromatosis type 4 disease mutations and identification of critical residues. Hum Mutat 2013;34:1371–80.
  • 11. Mayr R, Janecke AR, Schranz M, Griffiths WJ, Vogel W, Pietrangelo A, et al. Ferroportin disease: a systematic meta-analysis of clinical and molecular findings. J Hepatol 2010;53:941–9.
  • 12. Pietrangelo A. The ferroportin disease. Blood Cells Mol Dis 2004;32:131–8.
  • 13. Fernandes A, Preza GC, Phung Y, De Domenico I, Kaplan J, Ganz T, et al. The molecular basis of hepcidin-resistant hereditary hemochromatosis. Blood 2009;114:437–43.
  • 14. Letocart E, Le Gac G, Majore S, Ka C, Radio FC, Gourlaouen I, et al. A novel missense mutation in SLC40A1 results in resistance to hepcidin and confirms the existence of two ferroportin-associated iron overload diseases. Br J Haematol 2009;147:379–85.
  • 15. Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 2005;1:191–200.
  • 16. Wallace DF, Harris JM, Subramaniam VN. Functional analysis and theoretical modeling of ferroportin reveals clustering of mutations according to phenotype. Am J Physiol Cell Physiol 2010;298:C75–84.
  • 17. Foster DL, Boublik M, Kaback HR. Structure of the lac carrier protein of Escherichia coli. J Biol Chem 1983;258:31–4.
  • 18. Jin J, Guffanti AA, Beck C, Krulwich TA. Twelve-transmembranesegment (TMS) version (TMS VII–VIII) of the 14-TMS Tet(L) antibiotic resistance protein retains monovalent cation transport modes but lacks tetracycline efflux capacity. J. Bacteriol 2001;183:2667–71.
  • 19. Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH Jr. The major facilitator superfamily (MFS) revisited. FEBS J 2012;279: 2022–35.
  • 20. Yan N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci 2013;38:151–9.
  • 21. Bonaccorsi di Patti MC, Polticelli F, Cece G, Cutone A, Felici F, Persichini T, et al. A structural model of human ferroportin and of its iron binding site. FEBS J 2014;281:2851–60.
  • 22. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat Methods 2015;12:7–8.
  • 23. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010;5:725–38.
  • 24. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008;9:40.
  • 25. Wu S, Zhang Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 2007;35:3375–82.
  • 26. Zhang Y, Kihara D, Skolnick J. Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding. Proteins 2002;48:192–201.
  • 27. Wu S, Skolnick J, Zhang Y. Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol 2007;5:17.
  • 28. Li Y, Zhang Y. REMO: a new protocol to refine full atomic protein models from C-traces by optimizing hydrogen-bonding networks. Proteins 2009;76:665–76.
  • 29. Iancu CV, Zamoon J, Woo SB, Aleshin A, Choe JY. Crystal structure of a glucose/Hsymporter and its mechanism of action. Proc Natl Acad Sci USA 2013;110:17862–7.
  • 30. Huang Y, Lemieux MJ, Song J, Auer M, Wang DN. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 2003;301:616–20.
  • 31. Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, et al. Crystal structure of the human glucose transporter GLUT1. Nature 2014;510:121–5.
  • 32. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S. Structure and mechanism of the lactose permease of Escherichia coli. Science 2003;301:610–5.
  • 33. Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N. Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 2014;507:73–7.
  • 34. Solcan N, Kwok J, Fowler PW, Cameron AD, Drew D, Iwata S, et al. Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J 2012;31:3411–21.
  • 35. Guettou F, Quistgaard EM, Raba M, Moberg P, Löw C, Nordlund P. Selectivity mechanism of a bacterial homolog of the human drug-peptide transporters PepT1 and PepT2. Nat Struct Mol Biol 2014;21:728–31.
  • 36. Wisedchaisri G, Park MS, Iadanza MG, Zheng H, Gonen T. Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE. Nat Commun 2014;5:4521.
  • 37. Zhao Y, Mao G, Liu M, Zhang L, Wang X, Zhang XC. Crystal structure of the E. coli peptide transporter YbgH. Structure 2014;22:1152–60.
  • 38. Zheng H, Wisedchaisri G, Gonen T. Crystal structure of a nitrate/nitrite exchanger. Nature 2013;497:647–51.
  • 39. Yan H, Huang W, Yan C, Gong X, Jiang S, Zhao Y, et al. Structure and mechanism of a nitrate transporter. Cell Rep 2013;3:716–23.
  • 40. Doki S, Kato HE, Solcan N, Iwaki M, Koyama M, Hattori M, et al. Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT. Proc Natl Acad Sci USA 2013;110:11343–8.
  • 41. Quistgaard EM, Löw C, Moberg P, Trésaugues L, Nordlund P. Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters. Nat Struct Mol Biol 2013;20:766–8.
  • 42. Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH, et al. Crystal structure of a eukaryotic phosphate transporter. Nature 2013;496:533–6.
  • 43. Yin Y, He X, Szewczyk P, Nguyen T, Chang G. Structure of the multidrug transporter EmrD from Escherichia coli. Science 2006;312:741–4.
  • 44. Newstead S, Drew D, Cameron AD, Postis VL, Xia X, Fowler PW, et al. Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J 2011;30:417–26.
  • 45. Sun L, Zeng X, Yan C, Sun X, Gong X, Rao Y, et al. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature 2012;490:361–6.
  • 46. Kumar H, Kasho V, Smirnova I, Finer-Moore JS, Kaback HR, Stroud RM. Structure of sugar-bound LacY. Proc Natl Acad Sci USA 2014;11:1784–8.
  • 47. Ethayathulla AS, Yousef MS, Amin A, Leblanc G, Kaback HR, Guan L. Structure-based mechanism for Na()/melibiose symport by MelB. Nat Commun 2014;5:3009.
  • 48. Dang S, Sun L, Huang Y, Lu F, Liu Y, Gong H, et al. Structure of a fucose transporter in an outward-open conformation. Nature 2010;467:734–8.
  • 49. Morris TJ, Litvinova MM, Ralston D, Mattman A, Holmes D, Lockitch G. A novel ferroportin mutation in a Canadian family with autosomal dominant hemochromatosis. Blood Cells Mol Dis 2005;35:309–14.
  • 50. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK – a program to check the stereochemical quality of protein structures. J App Cryst 1993;26:283–91.
  • 51. Viet Hung L, Caprari S, Bizai M, Toti D, Polticelli F. LIBRA: Ligand Binding site Recognition Application. Bioinformatics 2015. pii: btv489.
  • 52. Benedek GB, Villars FM. Physics with illustrative examples from medicine and biology: electricity and magnetism. In: Greenbaum E, editor. Biological and medical physics biomedical engineering. New York: Springer-Verlag, 2000:403.
  • 53. Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems. Microbiol Rev 1996;60:575–608.
  • 54. Jiang D, Zhao Y, Wang X, Fan J, Heng J, Liu X, et al. Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A. Proc Natl Acad Sci USA 2013;110: 14664–9.
  • 55. McGuire AM, Cuthbert BJ, Ma Z, Grauer-Gray KD, Brunjes Brophy M, Spear KA, et al. Roles of the A and C sites in the manganese-specific activation of MntR. Biochemistry 2013;52:701–13.
  • 56. Cremonesi L, Forni GL, Soriani N, Lamagna M, Fermo I, Daraio F, et al. Genetic and clinical heterogeneity of ferroportin disease. Br J Haematol 2005;131:663–70.
  • 57. Zohn IE, De Domenico I, Pollock A, Ward DM, Goodman JF, Liang X, et al. The flatiron mutation in mouse ferroportin acts as a dominant negative to cause ferroportin disease. Blood 2007;109:4174–80.
  • 58. Callebaut I, Joubrel R, Pissard S, Kannengiesser C, Gérolami V, Ged C, et al. Comprehensive functional annotation of 18 missense mutations found in suspected hemochromatosis type 4 patients. Hum Mol Genet 2014;23:4479–90.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6aca711d-30fe-44a7-99d9-74e5d6f4ecc6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.