PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trends and perspectives in modification of zirconium oxide for a dental prosthetic applications – A review

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Full-ceramic dental restorations made from ZrO2 have become increasingly popular due to their aesthetics and mechanical strength, and are gradually replacing prostheses made of porcelain fused to metal. Nevertheless, due to the variability in the physicochemical properties in a wet environment at elevated temperature, zirconia is quite a controversial material, the use of which in the environment of the mouth is questionable and raises many concerns. The reason for the variability in the physicochemical changes is the martensitic transformation in which metastable phases (b, g) change into the stable phase (a). For biomedical applications, the most desired is the b-phase. A very unfavourable phenomenon accompanying the martensitic transformation in a wet environment is low temperature degradation, which is an autocatalytic process accelerating negative changes in ZrO2. The aim of this review is a comprehensive study of the degradation phenomenon problems according to prosthetic treatment with a fixed prosthesis and ways to reduce it.
Twórcy
  • Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Silesian University of Technology, Charles de Gaulle'a 40 Street, 41-800 Zabrze, Poland
  • Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Silesian University of Technology, Zabrze, Poland
  • Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Silesian University of Technology, Zabrze, Poland
autor
  • Department of Dental Technology, Medical College of Zabrze, Zabrze, Poland
Bibliografia
  • [1] Majewski S, Pryliński M. Materials and technologies of modern dental prosthetics. Lublin: Czelej Publishing House; 2013.
  • [2] Panek H. New technologies in dental prosthetics. Wrocław: Wroclaw Medical University Department of Prosthodontics; 2006.
  • [3] Marciniak J, Kaczmarek M, Ziębowicz A. Biomaterials in stomatology. Gliwice: Print House of Silesian University of Technology; 2008.
  • [4] Sabaliauskas V, Juciute R, Bukelskiene V, Rutkunas V, Trumpaite-Vanagiene R, Puriene A. In vitro evaluation of cytotoxicity of permanent prosthetic materials. Stomatologija 2011;13:75–80.
  • [5] Brackett MG, Lockwood PE, Messer RL, Lewis JB, Bouillaguet S, Wataha JC. In vitro cytotoxic response to lithium disilicate dental ceramics. Dent Mater 2008;24 (4):450–6.
  • [6] Knosp H, Holliday R, Corti ChW. Gold in dentistry: alloys, uses and performance. Gold Bull 2003;36(3):93–102.
  • [7] Federlin M, Männer T, Hiller KA, Schmidt S, Schmalz G. Two-year clinical performance of cast gold vs ceramic partial crowns. Clin Oral Invest 2006;10:126–33.
  • [8] Naumann M, Ernst J, Reich S, Weißhaupt P, Beuer F. Galvano- vs. metal-ceramic crowns: up to 5 year result of a randomized split-mouth study. Clin Oral Invest 2011;11:657–60.
  • [9] Garoushi S, Vallittu PK, Lassila LV. Fracture resistance of short, randomly oriented, glass fiber-reinforced composite premolar crowns. Acta Biomater 2007;3:779–84.
  • [10] Tsitrou EA, Northeast SE, van Noort R. Evaluation of the marginal fit of three margin designs of resin composite crowns using CAD/CAM. J Dent 2007;35:68–73.
  • [11] Stawarczyk B, Ender A, Trottmann A, Özcan M, Fischer J, Hämmerle Ch. Load-bearing capacity of CAD/CAM milled polymeric three-unit fixed dental prostheses: effect of aging regimens. Clin Oral Invest 2012;16:1669–77.
  • [12] Xin X-Z, Chen J, Xiang N, Gong Y, Wei B. Surface characteristics and corrosion properties of selective laser melted Co–Cr dental alloy after porcelain firing. Dent Mater 2014;30:263–70.
  • [13] Lin HY, Bowers B, Wolan JT, Cai Z, Bumgardner JD. Metallurgical, surface, and corrosion analysis of Ni–Cr dental casting alloys before and after porcelain firing. Dent Mater 2008;24:378–85.
  • [14] Henriques B, Soares D, Silva FS. Microstructure, hardness, corrosion resistance and porcelain shear bond strength comparison between cast and hot pressed CoCrMo alloy for metal–ceramic dental restorations. J Mech Behav Biomed Mater 2012;12:83–92.
  • [15] Qiu J, Yu W, Zhang F. Effects of the porcelain-fused-to- metal firing process on the surface and corrosion of two Co-Cr dental alloys. J Mater Sci 2011;46:1359–68.
  • [16] Roach MD, Wolan JT, Parsell DE, Bumgardner JD. Use of X-ray photoelectron spectroscopy and cyclic polarization to evaluate the corrosion behavior of six nickel-chromium alloys before and after porcelain-fused-to-metal firing. J Prosthet Dent 2000;84:623–34.
  • [17] Ziębowicz A, Ziębowicz B, Bączkowski B. Electrochemical behavior of materials used in dental implantological systems. Solid State Phenom 2015;227:447–50.
  • [18] Andreiotell M, Wenz H, Kohal R. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin Oral Implants Res 2009;20(Suppl. 4):32–47.
  • [19] Al-Radha AS, Dymock D, Younes Ch, O'Sullivan D. Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion. J Dent 2012;20:146–53.
  • [20] Dudek A. Surface properties in titanium with hydroxyapatite coating. Optica Applicata 2009;39(4): 825–31.
  • [21] Dudek A, Kolan C. Assessments of shrinkage degree in bioceramic sinters HA + ZrO2. Solid State Phenom 2010;165:25–30.
  • [22] Li Z, Kawashita M. Current progress in inorganic artificial biomaterials. J Artif Organs 2011;14:163–70.
  • [23] Kang MS, Ercoli C, Galindo DF, Graser GN, Moss ME, Tallents RH. Comparison of the load at failure of soldered and nonsoldered porcelain-fused-to-metal crowns. J Prosthet Dent 2003;90:235–40.
  • [24] Henriquesn B, Goncalves S, Soares D, Silva FS. Shear bond strength comparison between conventional porcelain fused to metal and new functionally graded dental restorations after thermal–mechanical cycling. J Mech Behav Biomed Mater 2012;12:194–205.
  • [25] Wang ChH, Wu J, Li HY, Wang PP, Lee HE, Du JK. Fracture resistance of different metal substructure designs for implant-supported porcelain-fused-to-metal (PFM) crowns. J Dent Sci 2013;8:314–20.
  • [26] Özüpek Ş, Ünlü UC. Viscoelastic analysis of a dental metal-ceramic system. Mech Time-Depend Mater 2012;16:427–37.
  • [27] Gupta S, Awinashe V, Palekar U, Gupta AS. Effects of surface abrasion on the flexural strength of glazed and re-glazed metal ceramics: an in vitro study. J Indian Prosthodont Soc 2014;14(1):110–4.
  • [28] Denry I, Holloway JA. Ceramics for dental applications: a review. Materials 2010;3:351–68.
  • [29] Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent 2007;98:389–404.
  • [30] Saito A, Komine F, Blatz MB, Matsumura H. A comparison of bond strength of layered veneering porcelains to zirconia and metal. J Prosthet Dent 2010;104:247–57.
  • [31] Coldeaa EA, Swaina MV, Thielb N. In-vitro strength degradation of dental ceramics and novel PICN material by sharp indentation. J Mech Behav Biomed Mater 2013;26: 34–42.
  • [32] Zarone F, Russo S, Sorrentino R. From porcelain-fused-to- metal to zirconia: clinical and experimental considerations. Dent Mater 2011;27:83–96.
  • [33] Heintze S, Rousson V. Survival of zirconia- and metal- supported fixed dental prostheses: a systematic review. Int J Prosth 2010;23(6):493–502.
  • [34] Takeichi T, Katsoulis J, Blatz MB. Clinical outcome of single porcelain-fused-to-zirconium dioxide crowns: a systematic review. J Prosthet Dent 2013;110:455–61.
  • [35] Baldassarri M, Stappert ChFJ, Wolff MS, Thompson VP, Zhang Y. Residual stresses in porcelain-veneered zirconia prostheses. Dent Mater 2012;28:873–9.
  • [36] Komine F, Iwai T, Kobayashi K, Matsumura H. Marginal and internal adaptation of zirconium dioxide ceramic copings and crowns with different finish line designs. Dent Mater J 2007;26(5):659–64.
  • [37] Anusavice KJ. Standardizing failure, success, and survival decisions in clinical studies of ceramic and metal–ceramic fixed dental prostheses. Dent Mater 2012;28:102–11.
  • [38] Hamouda IM, El-Waseffy NA, Hasan AM, El-Falal AA. Evaluation of an experimental dental porcelain. J Mech Behav Biomed Mater 2010;S3:610–8.
  • [39] Inagaki R, Yoda M, Kikuchi M, Kimura K, Okuno O. Strength of porcelain fused to pure titanium made by CAD/ CAM. Interface Oral Health Sci 2007;347–8.
  • [40] Park S, Quinn JB, Romberg E, Arola D. On the brittleness of enamel and selected dental materials. Dent Mater 2008;24:1477–85.
  • [41] Heintze S, Rousson V. Fracture rates of IPS empress all-ceramic crowns: a systematic review. Int J Prosthod 2010;23(2):129–33.
  • [42] Rosentritt M, Kolbeck C, Handel G, Schneider-Feyrer S, Behr M. Influence of the fabrication process on the in vitro performance of fixed dental prostheses with zirconia substructures. Clin Oral Invest 2011;15:1007–12.
  • [43] Rao S, Chowdhary R. Comparison of fracture toughness of all-ceramic and metal–ceramic cement retained implant crowns: an in vitro study. J Indian Prosthodont Soc 2014;14 (4):408–14.
  • [44] Anitha KV, Dhanraj M, Haribabu R. Comparison of the effect of different ceramic alloys and porcelain systems upon the color of metal–ceramic restorations: an in vitro study. J Indian Prosthodont Soc 2013;13(3):296–302.
  • [45] El-Meliegy E, van Noort R. Glasses and glass ceramics for medical application. New York-London: Springer; 2012. p. 184–236.
  • [46] Shackelford JF, Doremus RH, editors. Ceramic and glass materials. Structure, properties and processing. New York/ London: Springer; 2008. p. 169–98.
  • [47] Wang X, Fan D, Swain MV, Zhao K. A systematic review of all-ceramic crowns – clinical fracture rates in relation to restored tooth types. Int J Prosthodont 2012;25(5):441–50.
  • [48] Polansky R, Heschl A, Arnetzl G, Haas M, Wegscheider W. Comparison of the marginal fit of different all-ceramic and metal-ceramic crown systems: an in vitro study. J Stomat Occ Med 2010;3:106–10.
  • [49] Swain MV. Impact of oral fluids on dental ceramics: what is the clinical relevance? Dent Mater 2014;30:33–42.
  • [50] Osiko VV. Extra strong wear-resistant materials based on nanostructured crystals of partially stabilized zirconium dioxide, Focus Article. Mendeleev Commun 2009;19: 117–22.
  • [51] Chevalier J, Gremillard L, Virkar AV, Clarke DR. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 2009;92 (9):1901–20.
  • [52] Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater 2008;24:289–98.
  • [53] Manicone PF, Iommetti PR, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. J Dent 2007;35:819–26.
  • [54] Ramesh TR, Gangaiah M, Harish PV, Krishnakumar U, Nandakishore B. Zirconia ceramics as a dental biomaterial – an overview. Trends Biomater Artif Organs 2012;26 (3):154–60.
  • [55] Komine F, Blatz MB, Matsumura H. Current status of zirconia-based fixed restorations. J Oral Sci 2010;52(4): 531–9.
  • [56] Amat NF, Muchtar A, Yahaya N, Ghazali MJ. A review of zirconia as a dental restorative material. Aust J Basic Appl Sci 2012;6(12):9–13.
  • [57] Bachhav VCh, Aras MA. Zirconia-based fixed partial dentures: a clinical review. Quintessence Int 2011;42 (2):173–82.
  • [58] Nakamura TT, Kanno T, Milleding P, Örtengr U. Zirconia as a dental implant abutment material: a systematic review. Int J Prosthodont 2010;23(4):299–309.
  • [59] Stendera P, Grochowski P, Łomżyński Ł. The use of zirconia in prosthetic dentistry. Prosthetic Dent 2012;LXII (2):115–20.
  • [60] Larsson C. Zirconium dioxide based dental restorations. Studies on clinical performance and fracture behavior. Swed Dent J Suppl 2011;213:9–84.
  • [61] Vagkopolou T, Koutayas SO, Koidis P, Strub JR. Zirconia in dentistry: part 1. Discovering the nature of an upcoming bioceramics. Eur J Esthet Dent 2009;4(2):130–51.
  • [62] Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. J Prosthodont Res 2013;57:236–61.
  • [63] Koutayas SO, Vagkopolou T, Pelekanos S, Koidis P, Strub JR. Zirconia in dentistry: part 2. Evidence-based clinical breakthrough. Eur J Esthet Dent 2009;4(4):348–80.
  • [64] Ji Y, Zhang XD, Wang XC, Che ZC, Yu XM, Yang HZ. Zirconia bioceramics as all-ceramics crowns material: a review. Rev Adv Mater Sci 2013;34:72–8.
  • [65] Kelly JR. Computer-aided designed/computer-assisted manufactured (CAD/CAM) all-ceramic crowns appear to perform better than all-composite resin crowns following the first 3 years of placement. J Evid Based Dent Pract 2011;11:203–5.
  • [66] Beuer F, Schweiger J, Wichberger M. High-strength CAD/ CAM-fabricated veneering material sintered to zirconia copings – a new fabrication mode for all-ceramic restoration. Dent Mater 2012;25(1):121–8.
  • [67] Guess PC, Bonfante EA, Silva N, Coelho PG, Thompson VP. Effect of core design and veneering technique on damage and reliability of Y-TZP-supported crowns. Dent Mater 2013;29:307–16.
  • [68] Takaba M, Tanaka S, Ishiura Y, Baba K. Implant-supported fixed dental prostheses with CAD/CAM-fabricated porcelain crown and zirconia-based framework. J Prosthodont 2013;22(5):402–7.
  • [69] Ziębowicz A, Bączkowski B. Numerical analysis of the implant-abutment system. In: Piętka E, et al., editors. Information technologies in biomedicine. Berlin Heidelberg: Springer-Verlag; 2012. p. 341–50.
  • [70] Gautam P, Valiathan A. Ceramic brackets: in search of an ideal! Trends Biomater Artif Organs 2007;20(2):122–37.
  • [71] Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dent Mater 2012;28(4):449–56.
  • [72] Vichi A, Louca Ch, Corciolani G, Ferrari M. Color related to ceramic and zirconia restorations: a review. Dent Mater 2011;27:97–108.
  • [73] Zhao J, Shen Z, Si W, Wang X. Bi-colored zirconia as dental restoration ceramics. Ceram Int 2013;39:9277–83.
  • [74] Millen ChS, Reuben RL, Ibbetson RJ. The effect of coping/ veneer thickness on the fracture toughness and residual stress of implant supported, cement retained zirconia and metal–ceramic crowns. Dent Mater 2012;28:e250–8.
  • [75] Zinelis S, Thomas A, Syres K, Silikas N, Eliades G. Surface characterization of zirconia dental implants. Dent Mater 2010;26:295–305.
  • [76] Al-Radha ASD, Dymock D, Younes ChS, O'Sullivan D. Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion. J Dent 2012;40:146–53.
  • [77] Kosmac T, Oblak C, Jevnikar P, Funduk N, Marion L. Strength and reliability of surface treated Y-TZP dental ceramics. J Biomed Mater Res (Appl Biomater) 2000;53: 304–13.
  • [78] Li KCh, Waddell JN, Prior DJ, Ting S, Girvan L, van Vuuren LJ, et al. Effect of autoclave induced low-temperature degradation on the adhesion energy between yttria-stabilized zirconia veneered with porcelain. Dent Mater 2013;29:e263–70.
  • [79] Amaral M, Valandro LF, Bottino MA, Souza RO. Low-temperature degradation of a Y-TZP ceramic after surface treatments. J Biomed Mater Res 2013;101B(Part B):1387–92.
  • [80] Zhang J, Zhao Y, Liao Y, Jiang L, Yun X, Li W. Effect of sintering temperature on aging resistance and mechanical properties of 3Y-TZP dental ceramic. J Wuhan Univ Technol-Mater Sci Ed 2012;27(2):316–20.
  • [81] Preis V, Behr M, Handel G, Schneider-Feyrer S, Hahnel S, Rosentritt M. Wear performance of dental ceramics after grinding and polishing treatments. J Mech Behav Biomed Mater 2012;10:13–22.
  • [82] Traini T, Gherlone E, Parabita S, Caputi S, Piattelli A. Fracture toughness and hardness of aY-TZP dental ceramic after mechanical surface treatments. Clin Oral Invest 2013 [published online].
  • [83] Kontos L, Schille C, Schweizer E, Geis-Gerstorfer J. Influence of surface treatment on the wear of solid zirconia. Acta Odontol Scand 2013;71(3–4):482–7.
  • [84] Chevalier J. What future for zirconia as a biomaterial? Biomaterials 2006;27:535–43.
  • [85] Gremillard L, et al. Degradation of implant materials. In: Eliaz N, editor. Degradation of implant materials. New York: Springer; 2012. p. 195–240.
  • [86] Piconi C, Maccauro G. Review: Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1–25.
  • [87] Hannink RHJ, Kelly PM, Muddle BC. Transformation toughening in zirconia ceramics. J Am Ceram Soc 2000;83 (3):461–87.
  • [88] Jin XJ. Martensitic transformation in zirconia containing ceramics and its applications. Curr Opin Solid State Mater Sci 2005;9:313–8.
  • [89] Cattani-Lorente M, Scherrer SS, Ammann P, Jobin M, Wiskott A. Low temperature degradation on a Y-TZP dental ceramic. Acta Biomater 2011;7:858–65.
  • [90] Guo X. On the degradation of zirconia ceramics during low-temperature annealing in water vapor. J Phys Chem Solids 1999;60:539–46.
  • [91] Oyagűe RC, Monticelli F, Toledano M, Osorio E, Ferrari M, Osorio R. Effect of water ageing on microtensile bond strength of dual-cured resin cements to pre-treated sintered zirconium-oxide ceramics. Dent Mater 2009;23:392–9.
  • [92] Studart AR, Filser F, Kocher P, Gauckler LJ. In vitro lifetime of dental ceramics under cyclic loading in water. Biomaterials 2007;28:2695–705.
  • [93] Liang B, Ding Ch, Liao H, Coddet Ch. Study on structural evolution of nanostructured 3 mol% yttria stabilized zirconia coatings during low temperature ageing. J Eur Ceram Soc 2009;29:2267–73.
  • [94] Hallmann L, Ulmer P, Reusser E, Louvel M, Hämmerle ChHF. Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia. J Eur Ceram Soc 2012;32:4091–104.
  • [95] Dae-Joon K. Influence of ageing environment on low-temperature degradation of tetragonal zirconia alloys. J Eur Ceram Soc 1997;17:897–903.
  • [96] Borchers L, Stiesch M, Bach FW, Buhl JCh, Hűbsch Ch, Kellner T, et al. Influence of hydrothermal and mechanical conditions on the strength of zirconia. Acta Biomater 2010;6:4547–52.
  • [97] Keuper M, Berthold Ch, Nickel KG. Long-time aging in 3 mol.% yttria-stabilized tetragonal zirconia polycrystals at human body temperature. Acta Biomater 2014;10:951–9.
  • [98] Tsubakino H, Hamamoto M, Nozato R. Tetragonal-to- monoclinic phase transformation during thermal cycling and isothermal ageing in yttria-partially stabilized zirconia. J Mater Sci 1991;26:5521–6.
  • [99] Amaral M, Valandro LF, Bottino MA, Souza ROA. Low-temperature degradation of a Y-TZP ceramic after surface treatments. J Biomed Mater Res B: Appl Biomater 2013;101:1387–92.
  • [100] Implants for surgery: ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP). EN ISO 13356:2013; 2013.
  • [101] Naga SM, Abdelbary EM, Awaad M, El-Shaer YI, Abd- Elwahab HS. Effect of the preparation route on the mechanical properties on yttria-ceria doped tetragonal zirconia/alumina composites. Ceram Int 2013;39:1835–40.
  • [102] Benzaid R, Chevalier J, Saâdaoui M, Fanatozzi G, Nawa M, Diaz LA, et al. Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia–alumina nanocomposite for medical applications. Biomaterials 2008;29:3636–41.
  • [103] Bechepeche AP, Treu Jr O, Longo E, Paiva-Sanatos CO, Varela JA. Experimental and theoretical aspects of the stabilization of zirconia. J Mater Sci 1999;34:2751–6.
  • [104] Panova TI, Arent'ev MYu, Morozova LV, Drozdova IA. Synthesis and investigation of the structure of ceramic nanopowders in the ZrO2-CeO2-Al2O3 system. Glass Phys Chem 2010;36(4):470–7.
  • [105] Trusova EA, Khrushcheva AA, Vokhmintcev KV. Sol–gel synthesis and phase composition of ultrafine ceria-doped zirconia powders for functional ceramics. J Eur Ceram Soc 2012;32:1977–81.
  • [106] Kim DJ. Influence of ageing environment on low-temperature degradation of tetragonal zirconia alloys. J Eur Ceram Soc 1997;17(7):897–903.
  • [107] Lawn B. Fracture of brittle solids. 2nd ed. Cambridge: Cambridge University Press; 1993. p. 378.
  • [108] Chevalier J, Olagnon C, Fanatozzi G, Cales B. Subcritical crack growth and threshold in a 3Y-TZP ceramic under static and cyclic loading conditions. Ceram Int 1997;23 (3):263–6.
  • [109] Fabbri P, Piconi C, Burresi E, Maganami G, Mazzanti F, Mingazzini C. Liftime estimation of a zirconia-alumina composite for biomedical applications. Dent Mater 2014;30:138–42.
  • [110] Tsukuma K, Shimada M. Thermal of Y2O3 – partially stabilized zirconia (Y-PSZ) and Y-PSZ/Al2O3 composites. J Mater Sci Lett 1985;4:857–61.
  • [111] Guo X. Hydrothermal degradation mechanism of tetragonal zirconia. J Mater Sci 2001;36:3737–44.
  • [112] Guo X. Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules. Chem Mater 2004;16:3988–94.
  • [113] Guo X, Zhang Z. Grain size dependent grain boundary defect structure: case of doped zirconia. Acta Mater 2003;51:2539–47.
  • [114] Wang ChH, Wang MCh, Du JK, Sie YY, Hsi ChS, Lee HE. Phase transformation and nanocrystallite growth behaviour of 2% mol yttria-partially stabilized zirconia (2Y-PSZ) powders. Ceram Int 2013;39:5165–74.
  • [115] Málek J. The applicability of Johnson–Mehl–Avrami model in thermal analysis of the crystallization kinetics of glasses. Themochem Acta 1995;267:61–73.
  • [116] Sarkar SB, Ray HS. Analysis of kinetic data by Johnson– Mehl Equation. J Therm Anal 1990;36:231–42.
  • [117] Fábregas IO, Fuentes RO, Lamas DG, Fernández de Rapp ME, de Reca NW, Fantini MCA, et al. Local structure of metal-oxygen bond in compositionally homogeneous, nanocrystalline zirconia-ceria solid solutions synthesized by a gel-combustion process. J Phys Condens Matter 2006;18:7863–81.
  • [118] Lebrun N, Perrot P. Cerium-oxygen-zirconium in refractory metal systems: phase diagrams, crystallographic and thermodynamic data. Stuttgart: Materials Science International Services GmbH; 2010. p. 87–110.
  • [119] Callon GJ, Goldie DM, Dibb MF, Cairns JA. X-ray diffraction analysis of yttria stabilized zirconia powders by an organic sol–gel method. J Mater Sci Lett 2000;19:1689–91.
  • [120] Iddles DM, Bell AJ, Moulson AJ. Relationships between dopants, microstructure and the microwave dielectric properties of ZrO2-TiO2-SnO2 ceramics. J Mater Sci 1992;27:6303–10.
  • [121] Basu B, Vleugels J, Van Der Biest O. Transformation behavior of tetragonal zirconia: role of dopant content and distribution. Mater Sci Eng 2004;A366:338–47.
  • [122] Li P, Chen IW, Penner-Hahn JE. Effect of dopants on zirconia stabilization – an X-ray absorption study: III, Charge- compensating dopants. J Am Ceram Soc 1994;77(5):1289–95.
  • [123] Petrunin VF, Popov VV, Hongzhi Z, Korovin SA. Stability of high-temperature phases of ultrafine zirconia. Glass Phys Chem 2005;31(4):459–64.
  • [124] Bocanegra-Bernal MH, Díaz de la Torre S. Review: Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics. J Mater Sci 2002;37:4947–71.
  • [125] Ugas-Carrón R, Sittner F, Yekehtaz M, Flege S, Brötz J, Ensinger W. Influence of stabilizing agents on structure and protection performance of zirconium oxide films. Surf Coat Technol 2010;204:2064–7.
  • [126] Oliveira CF, Garcia FAC, Araújo DR, Macedo JL, Dias SCL, Dias JA. Effects of preparation and structure of cerium-zirconium mixed oxides on diesel soot catalytic combustion. Appl Catal A: Gen 2012;413-414:292–300.
  • [127] Naskar MK, Ganuguli D. Rare-earth doped zirconia fibers by sol–gel processing. J Mater Sci 1996;31:6263–7.
  • [128] Fu YP, Hu SH, Liu BL. Structure characterization and mechanical properties of CeO2-ZrO2 solid solution system. Ceram Int 2009;35:3005–11.
  • [129] Kern F. Ytterbia-neodymia-costabilized TZP – breaking the limits of strength-toughness correlations for zirconia? J Eur Ceram Soc 2013;33:965–73.
  • [130] Figueroa S, Desimoni J, Rivas PC, Caracoche MC. Local structures in the ZrO2-15 mol% Fe2O3 system obtained by ball milling. J Am Ceram Soc 2006;89(12):3759–64.
  • [131] Gómez A, Villanueva R, Vie D, Murcia-Masacros S, Martínez E, Beltrán A, et al. Large scale synthesis of nanostructures zirconia-based compounds from freeze-dries precursors. J Solid State Chem 2013;197:120–7.
  • [132] Dasari HP, Ahn JS, Ahn K, Park SY, Hong J, Kim H, et al. Synthesis, sintering and conductivity behavior of ceria-doped Scandia-stabilized zirconia. Solid State Ionics 2014;264:103–9.
  • [133] Chaim R, Basat G, Kats-Demyanets A. Effect of additives on grain growth during sintering of nanocrystalline zirconia alloys. Mater Lett 1998;35:245–50.
  • [134] Lin JD, Duh JG. Crystallite size and microstructure of thermally aged low-ceria and low-yttria doped zirconia. J Am Ceram Soc 1998;81(40):853–60.
  • [135] Fleger AJ, Burye TE, Yang Q, Nicholas JD. Cubic yttria stabilized zirconia sintering additive impacts: a comparative study. Ceram Int 2014. http://dx.doi.org/10.1016/j.ceramint.2014.07.071.
  • [136] Sun L, Guo H, Peng H, Gong S, Xu H. Phase stability and thermal conductivity of ytterbia and yttria co-doped zirconia. Prog Nat Sci: Mater Int 2013;23(4):440–5.
  • [137] Guo F, Xiao P. Effect of Fe2O3 doping on sintering of yttria- stabilized zirconia. J Eur Ceram Soc 2012;32:4157–60.
  • [138] Deryagina I, Khrustov V, Nikonov A, Paranin S, Ivanon V. Effect of sintering temperature and dopant concentration and electrical conductivity of ultra-fine-grained ZrO2- Sc2O3 ceramics. J Eur Ceram Soc 2014;34:45–53.
  • [139] del Monte F, Larsen W, Mackenzie JD. Stabilization of tetragonal ZrO2 in ZrO2-SiO2 binary oxides. J Am Ceram Soc 2000;83(3):628–34.
  • [140] Berendts S, Lerch M. Growth and characterization of low yttria-doped fully cubic stabilized zirconia-based single crystals. J Cryst Growth 2013;371:28–33.
  • [141] Mastelaro VR, Briois V, de Souza DPF, Silva CL. Structural studies of a ZrO2-CeO2 doped system. J Eur Ceram Soc 2003;23:273–82.
  • [142] Morrissey A, Tong J, Gorman BP, Reimanis IE. Characterization of nickel ions in nickel-doped yttria-stabilized zirconia. J Am Ceram Soc 2014;97(4):1041–7.
  • [143] Jang JW, Kim HK, Lee DY. The effect of tetravalent dopants on the unit cell volume of 2Y-TZP and 8Y-SZ. Mater Lett 2004;58:1160–3.
  • [144] Yoon S, Van Tyne ChJ, Lee H. Effect of alumina addition on the microstructure and grain boundary resistance of magnesia partially-stabilized zirconia. Curr Appl Phys 2014;14:922–7.
  • [145] Nakonieczny D, Walke W, Majewska J, Paszenda Z. Characterization of magnesia-doped yttria-stabilized zirconia powders for dental technology applications. Acta Bioeng Biomech 2014;16(4):99–106.
  • [146] Inokoshi M, Zhang F, De Munck J, Minakuchi S, Naert I, Vleugels J, et al. Influence of sintering conditions on low-temperature degradation of dental zirconia. Dent Mater 2014;30:669–78.
  • [147] Pecho OE, Ghinea R, Ionescu AM, de la Cruz Cardona J, Paravina RD, del Mar Pérez M. Color and translucency of zirconia ceramics, human dentine and bovine dentine. J Dent 2012;40S:e34–40.
  • [148] Pecho OE, Ghinea R, Ionescu AM, de la Cruz Cardona J, Bona AD, del Mar Pérez M. Optical behavior of dental zirconia and dentin analyzed by Kubelka-Munk theory. Dent Mater 2015;31:60–7.
  • [149] Huang X, Zheng X, Zhao G, Zhong B, Zhang X, Wen G. Microstructure and mechanical properties of zirconia-toughened lithium disilicate glass-ceramic composites. Mater Chem Phys 2014;143:845–52.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ac90b99-3c10-4d30-8053-4a40b815fba2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.