PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

SCP parameters estimation for catalogs with uncertain seismic magnitude values

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper addresses the issue of estimating the coefficients of the sotolongo-costa and posadas (SCP) model in the presence of uncertain earthquake magnitude data. The SCP model offers a more accurate representation of regional seismicity compared to the traditional Gutenberg-Richter (G-R) law and has been integrated into the probabilistic seismic hazard analysis (PSHA) framework as NEPSHA. The study aims to develop a method to calculate the SCP coefficients in the presence of uncertain magnitude data, implement the process in R programming language, and validate its effectiveness through a case study. The methodology involves developing the mathematical relationship for estimating the SCP parameters using maximum likelihood estimation (MLE) and modifying the MLE approach to account for magnitude uncertainty. The method is tested using simulated earthquake catalogs with varying degrees of magnitude uncertainty. The results demonstrate that the proposed method can alter the estimated values of the SCP parameters, particularly the a value, by approximately 50% when magnitude uncertainty is considered. The q variable is found to be less affected by the estimation method.
Czasopismo
Rocznik
Strony
163--169
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
  • Department of Civil Engineering, Faculty of Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
  • Department of Statistics, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
  • Faculty of Technology and Mining, Yasouj University, Choram 75761-59836, Iran
  • Department of Civil Engineering, Faculty of Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
Bibliografia
  • 1. Abe S, Suzuki N (2023) Scaling and memory in seismological phenomena. Acta Geophys 71:2081-2087. https://doi.org/10.1007/ s11600-023-01102-8
  • 2. Aki K (1965) Maximum likelihood estimation of b in the formula log N = a - bM and its confidence limits. Bull Eq Res Inst Tokyo University 43:237-239
  • 3. Baker J, Bradley B (2021) P Stafford. Seismic hazard and risk analysis Cambridge University Press. https://doi.org/10.1017/9781108425 056
  • 4. Geist EL, Parsons T (2019) A combinatorial approach to determine earthquake magnitude distributions on a variable slip-rate fault. Geophys J Int 219(2):734-752. https://doi.org/10.1093/gji/ggz294
  • 5. Gogen B, Karimzadeh S, Lourenęo PB (2024) Probabilistic seismic hazard analysis for Bagan (Myanmar). Acta Geophys. https://doi. org/10.1007/s11600-023-01263-6
  • 6. Ishibe T, Shimazaki K (2008) The gutenberg-richter relationship vs. the characteristic earthquake model: effects of different sampling methods. Bull Earthq Res Inst Univ Tokyo 83:131-151. https:// doi.org/10.1111/j.1365-246X.2012.05595.x
  • 7. Kijko A (1988) Maximum likelihood estimation of Gutenberg-Richterb parameter for uncertain magnitude values. Pure Appl Geophys 127(4):573-579. https://doi.org/10.1007/BF00881745
  • 8. Lomnitz-Adler J, Lomnitz C (1979) A modified form of the Gutenberg-Richter magnitude-frequency relation. Bull Seismol Soc Am 69(4):1209-1214. https://doi.org/10.1785/BSSA0690041209
  • 9. Matcharashvili T, Chelidze T, Javakhishvili Z, Jorjiashvili N, Paleo UF (2011) Non-extensive statistical analysis of seismicity in the area of Javakheti. Georgia Comput Geosci 37(10):1627-1632. https:// doi.org/10.1016/j.cageo.2010.12.008
  • 10. McGuire, R. K. (2004). Seismic hazard and risk analysis. Earthquake Engineering Research Institute, Oakland CA. 221 pp. https://doi. org/10.1785/gssrl.77.1.43
  • 11. Motaghed S, Khazaee M, Mohammadi M (2021) The b-value estimation based on the artificial statistical method for Iran Kope-Dagh seismic province. Arab J Geosci 14(15):1461. https://doi.org/10. 1007/s12517-021-07970-y
  • 12. Motaghed S, Khazaee M, Eftekhari N, Mohammadi M (2023) A non-extensive approach to probabilistic seismic hazard analysis. Nat Hazard 23(3):1117-1124. https://doi.org/10.5194/ nhess-23-1117-2023
  • 13. Musson RM (2012) The effect of magnitude uncertainty on earthquake activity rates. Bull Seismol Soc Am 102(6):2771-2775. https:// doi.org/10.1785/0120110224
  • 14. Rhoades DA, Dowrick DJ (2000) Effects of magnitude uncertainties on seismic hazard estimates. In: Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 30th January-4th February.
  • 15. Sarlis NV, Skordas ES, Varotsos PA (2010) Nonextensivity and natural time: the case of seismicity. Phys Rev E 82(2):021110
  • 16. Sotolongo-Costa O, Posadas A (2004) Fragment-asperity interaction model for earthquakes. Phys Rev Lett 92(4):048501. https://doi. org/10.1103/physrevlett.92.048501
  • 17. Telesca L (2012) Maximum likelihood estimation of the nonextensive parameters of the earthquake cumulative magnitude distribution. Bull Seismol Soc Am 102(2):886-891. https://doi.org/10.1785/ 0120110093
  • 18. Tinti S, Mulargia F (1985) Effects of magnitude uncertainties on estimating the parameters in the Gutenberg-Richter frequencymagnitude law. Bull Seis Soc Am 75:1681-1697. https://doi.org/ 10.1785/BSSA0750061681
  • 19. Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52:479-487. https://doi.org/10.1007/BF01016429
  • 20. Vallianatos F, Michas G (2020) Complexity of fracturing in terms of non-extensive statistical physics: from earthquake faults to arctic sea ice fracturing. Entropy 22(11):1194. https://doi.org/10.3390/ e22111194
  • 21. Valverde-Esparza SM, Ram^rez-Rojas A, Flores-Marquez EL, Telesca L (2012) Non-extensivity analysis of seismicity within four subduction regions in Mexico. Acta Geophys 60:833-845. https://doi. org/10.2478/s11600-012-0012-1
  • 22. Vilanova SP, Fonseca JF (2007) Probabilistic seismic-hazard assessment for Portugal. Bull Seismol Soc Am 97(5):1702-1717. https:// doi.org/10.1785/0120050198
  • 23. Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seis Soc Am 70:1337-1346. https://doi.org/10.1785/BSSA0 700041337
  • 24. Wesnousky SG (1994) The Gutenberg-Richter or characteristic earthquake distribution, which is it? Bull Seismol Soc Am 84(6):1940-1959. https://doi.org/10.1785/BSSA0840061940
  • 25. Yazdani A, Nicknam A, Khanzadi M, Motaghed S (2015) An artificial statistical method to estimate seismicity parameter from incomplete earthquake catalogs, a case study in metropolitan Tehran. Iran Scientia Iranica 22(2):400-409
  • 26. Youngs RR, Coppersmith KJ (1985) Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bull Seismol Soc Am 75:939-964
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ac77162-5621-46b8-bb2f-275368ff08ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.