PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation on magnetic-gravity combined beneficiation of low-grade iron ore

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Iron ore is an important raw material for manufacturing steel, while the grade of domestic iron ore is relatively low in China, thus it is difficult to concentrate. The low-grade iron ore with a total iron content of only 33.51% is innovatively upgraded by the magnetic-gravity combined beneficiation method. The effects of three key operating parameters of magnetic induction, grinding concentration, and centrifuge speed on magnetic-gravity combined beneficiation are investigated. These results show that the magnetic-gravity combined beneficiation method significantly improves the iron grade of the concentrates at high recovery. The feasibility is further confirmed through continuous expansion semi-industrial tests with the optimized parameters. The grade of the iron ore concentrate is increased from 33.51% to 63.58% with an iron recovery of 71.01% and a productivity of 37.43%. It is thus concluded that the magnetic-gravity combined beneficiation method has provided a technical reference for the recovery of iron resources from low-grade ores.
Rocznik
Strony
atr. no. 192832
Opis fizyczny
Bibliogr. 39 poz.,rys., tab., wykr.
Twórcy
autor
  • Key Lab of Modern Manufacture Quality Engineering, Hubei University of Technology, Wuhan 430068, China
autor
  • Key Lab of Modern Manufacture Quality Engineering, Hubei University of Technology, Wuhan 430068, China
autor
  • SLon Magnetic Separator Co., Ltd., Ganzhou, 341000, China
Bibliografia
  • BAAWUAH, E., KELSEY, C., ADDAI-MENSAH, J., SKINNER, W., 2020. Assessing the performance of a novel pneumatic magnetic separator for the beneficiation of magnetite ore. Minerals Engineering. 156.
  • CHANG, J., LI, H. J., ZHENG, K. D., LIU, C. G., WANG, L. M., LI, B., BU, X. N., SHAO, H. Z., 2020. Mineralogical characterisation and separation studies on the recovery of Cr2O3 in the high carbon ferrochrome slag. Physicochemical Problems of Mineral Processing. 56(3), 460-470.
  • DAI, M. B., ZHOU, Y. C., XIAO, Q. F., LV, J. F., HUANG, L. Y., XIE, X., HU, Y. M., TONG, X., CHUN, T. J., 2023. Arsenic removal and iron recovery from arsenic-bearing iron ores by calcification-magnetic roasting and magnetic separation process. Frontier of Environmental Friendly Recycling Technology for Metals. 16(21), 6884.
  • DAS, B., RATH, S. S., 2020. Existing and new processes for beneficiation of Indian iron ores. Transactions of the Indian Institute of Metals. 73(3), 505-514.
  • DEHGHANI, F., KHOSRAVI, R., PAZOKI, A., KEBE, M., JAHANIAN, R., SIAVOSHI, H., GHOSH, T., 2022. Application of magnetic separation and reverse anionic flotation to concentrate fine particles of iron ore with high sulfur content. Physicochemical Problems of Mineral Processing. 58(3).
  • DE MATOS, V. E., NOGUEIRA, S. D. S., KOWALCZUK, P. B., DA SILVA, G. R., PERES, A. E., 2022. Differences in etheramines froth properties and the effects on iron ore flotation. Part I: Two-phase systems. Mineral Processing and Extractive Metallurgy Review. 43(2), 209-216.
  • DENG, J. H., NING, X. A., QIU, G. Q., ZHANG, D. Y., CHEN, J. Y., LI, J. Y., LIANG, Y. Z., WANG, Y., 2023. Optimizing iron separation and recycling from iron tailings: A synergistic approach combining reduction roasting and alkaline leaching. Journal of Environmental Chemical Engineering. 11(3), 110266.
  • DUDCHENKO, N., PONOMAR, V., OVSIIENKO, V., CHEREVKO, Y., PERELSHTEIN, I., 2024. Mineral magnetic modification of fine iron ore tailings and their beneficiation in alternating magnetic fields. Metals. 14(1).
  • DU, X., FU, G. H., CHU, H. C., YANG, X. F., FU, Y. F., DONG, Z. H., LIU, J. J., MAN, X. F., ZHI, H., 2024. Characteristics analysis of iron tailings and current status and prospects of its utilization technology. China Mining Magazing. 33(2), 115-124.
  • FAN, G. X., WANG, L. G., CAO, Y. J., LI, C., 2020. Collecting agent-aineral interactions in the reverse flotation of iron ore: A brief review. Minerals. 10(8).
  • GUIRAL-VEGA, J. S., PEREZ-BARNUEVO, L., BOUCHARD, J., URE, A., POULIN, E., DU BREUIL, C., 2022. Particle-based characterization and classification to evaluate the behavior of iron ores in drum-type wet low-intensity magnetic separation. Minerals Engineering. 186. 107755.
  • GU, J. T., YUAN, Z. T., DU, Y. S., LU, J. W., YANG, C., LV, H. Y., 2024. Enhancement of ilmenite magnetic properties by oxidation roasting and magnetic separation. Physicochemical Problems of Mineral Processing. 60(4), 190706.
  • HAN, X. Y., WANG, F., ZHAO, Y., MENG, J. P., TIAN, G. Y., WANG, L. J., LIANG, J. S., 2023. Recycling of iron ore tailings into magnetic nanoparticles and nanoporous materials for the remediation of water, air and soil: a review. Environmental Chemistry Letters. 21, 1005-1028.
  • KUKKALA, P. C., KUMAR, S., NIRALA, A., KHAN, M. A., ALKAHTANI, M.Q., ISLAM, S., 2024. Beneficiation of low-grade hematite iron ore fines by magnetizing roasting and magnetic separation. Acs Omega. 9(7), 7634-7642.
  • LIMA, L., ALBERTIN, E., CORREA, E. R., RABELLO, R. B., UEHARA, S., 2020. Pearlite refining strategies for hypoeutectic gray cast iron. International Journal of Metalcasting. 14(3), 766-773.
  • LIU, B. B., ZHANG, Y. B., LU, M. M., SU, Z. J., LI, G. H., JIANG, T., 2019. Extraction and separation of manganese and iron from ferruginous manganese ores: A review. Minerals Engineering. 131, 286-303.
  • LIU, J. J., XIE, S. P., LI, X. D., LU, D. F., WANG, H., YAO, Q., YANG, X. F., FU, Y. F., 2022. Separating efficiency of ferromagnetic particles and principle of low-intensity dry magnetic separator under different air supply modes:Based on multi-physical modeling. Powder Technology. 415.
  • LIU, J. S., XING, Z. X., CHENG, G. J., XUE, X. X., DING, X. Y., 2022. Study on the grinding kinetics and magnetic separation of low-grade vanadiferous titanomagnetite concentrate. Metals. 12(4), 575.
  • LIU, S., ZHANG, B., MIN, H., AN, Y. R., ZHU, Z. X., LI, C., 2021. X-Ray Fluorescence Spectroscopy Combined With Discriminant Analysis to Identify Imported Iron Ore Origin and Brand : Application Development. Spectroscopy And Spectral Analysis. 41(1), 285-291.
  • LIU, Z. G., CHU, M. S., WANG, Z., ZHAO, W., TANG, J., 2017. Study on metallized reduction and magnetic separation of iron from fine particles of high iron bauxite ore. High Temperature Materials and Processes. 36, 79-88.
  • MA, B. D., CHEN, Y. T., ZHANG, S., LI, X. X., 2018. Remote sensing extraction method of tailings ponds in ultra-low-grade iron mining area based on spectral characteristics and texture entropy. Entropy-based Data Mining. 20(5), 345.
  • MA, W., ZHU, X., WANG, M., 2013. Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm. Resources Policy. 38, 613-620.
  • MITCHELL, K., URADE, S., KERSHAW, A., CHU, P. B., JIN, Y. F., 2023. 3D printing of conical centrifuge system for mineral particle separation. Separation and Purification Technology. 306.
  • NAYAK, A., JENA, M. S., MANDRE, N. R., 2021. Application of Enhanced Gravity Separators for Fine Particle Processing: An Overview. Journal of Sustainable Metallurgy. 7(2), 315-339.
  • NIRLIPTA, P. N., BHATU, K. P., 2013. Separation behaviour of iron ore fines in kelsey centrifugal jig. Journal of Minerals and Materials Characterization and Engineering. 1(3), 85-89.
  • NUNNA, V., SUTHERS, S. P., POWNCEBY, M. I., SPARROW, G. J., 2021. Beneficiation strategies for removal of silica and alumina from low-grade hematite-goethite iron ores. Mineral Processing and Extractive Metallurgy Review. 43(8), 1049-1067.
  • RATH, S. S., SAHOO, H., 2022. A review on the application of sarch as depressant in iron ore flotation. Mineral Processing and Extractive Metallurgy Review. 43(1), 122-135.
  • RODRIGUES, A. F. D. V., JUNIOR, H. D., RODRIGUES, O. M. S., ZHOU, J. M., GALVIN, K. P., 2023. Gravity separation of fine itabirite iron ore using the Reflux Classifier-Part I-Investigation of continuous steady state separations across a wide range of parameters. Minerals Engineering. 201.
  • SIVRIKAYA, O., AROL, A. I., 2012. Evaluation of low grade iron ore deposit in erzincan-turkey for iron ore pellet concentrate production. Physicochemical Problems of Mineral Processing. 48(2), 475-484.
  • SONG, Y., WANG, N., YU, A., 2019. Temporal and spatial evolution of global iron ore supply-demand and trade structure. Resources Policy. 64, 101506.
  • SUBHNIT, K. R., DEEPAK, N., SWAGAT, S. R., 2020. A review on the enrichment of iron values of low-grade iron ore resources using reduction roasting-magnetic separation. Powder Technology. 367, 796-808.
  • TANG, M., 2021. Composition of the Earth’s Crust. Encyclopedia of Geology, 2nd ed. 178-186.
  • TERZI, M., UNVER, I. K., CINAR, M., OZDEMIR, O., 2021. Digital image processing (DIP) application on the evaluation of iron-rich heavy mineral concentrates produced from river sand using a sequential mineral processing approach. Physicochemical Problems of Mineral Processing. 57(3), 21-35.
  • TIU, G., GHORBANI, Y., JANSSON, N., WANHAINEN, C., BOLIN, N. J., 2022. Ore mineral characteristics as rate-limiting factors in sphalerite flotation: Comparison of the mineral chemistry (iron and manganese content), grain size, and liberation. Minerals Engineering. 185, 107705.
  • WAN, H., LU, X. L., LUUKKANEN, S., QU, J. P., ZHANG, C. H., CHEN, Y. X., BU, X. Z., 2022. Properties of flash roasted products from low-grade refractory iron tailings and improvement method for their magnetic separation index. Physicochemical Problems of Mineral Processing. 58(6).
  • XIE, S. P., HU, Z. C., LU, D. F., ZHAO, Y., 2022. Dry permanent magnetic separator: Present status and future prospects. Minerals. 12(10).
  • XU, G., LI, F., JIANG, P. P., ZHANG, S. Q., 2023. Preparation of red iron by magnetization roasting-hydrothermal method using ultra-low-grade limonite. Sustainable Metallurgical Processing and Industrial Solid Waste Recycling. 15(6), 4708.
  • YUE, Q., BU, Q. C., LI, X., ZHAO, F., HE, J. H., LI, Y., 2021. Value chain and statistical entropy analyses based on iron flows in China during 1990-2015. Journal of Iron and Steel Research International. 28(8), 938-948.
  • YU, J. W., HAN, Y. X., LI, Y. J., GAO, P., 2017. Beneficiation of an iron ore fines by magnetization roasting and magnetic separation. International Journal of Mineral Processing. 168, 102-108.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ac3e5b5-c580-479d-ab5c-4aa65aa502e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.