PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic Description of Ternary Fe-B-X Systems. Part 8: Fe-B-Mo, with Extension to Quaternary Fe-B-Cr-Mo System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermodynamic optimizations of the ternary Fe-B-Mo system and its binary sub-system B-Mo are presented. The Fe-B-Mo description is then extended to the quaternary Fe-B-Cr-Mo system by assessing the ternary B-Cr-Mo system. The thermodynamic descriptions of the other binaries (Fe-B, Fe-Cr, Fe-Mo, B-Cr, and Cr-Mo) and the other ternaries (Fe-B-Cr and Fe-Cr-Mo) are taken from earlier studies. In this study, the adjustable parameters of the B-Mo, Fe-B-Mo, and B-Cr-Mo systems were optimized using the experimental thermodynamic and the phase equilibrium data from the literature. The solution phases of the system (liquid, bcc and fcc) are described with the substitutional solution model, and most borides are treated as stoichiometric phases or semistoichiometric phases, using a simple two-sublattice model for the latter. The system’s intermetallic phases, Chi, Mu, R, and Sigma (not dissolving boron) as well as boride M3B2, based on a formulation of (Cr,Fe)(Cr,Fe,Mo)2(B)2, are described with a three-sublattice model. Reasonable agreement is obtained between the calculated and measured phase equilibria in all four systems: B-Mo; Fe-B-Mo; B-Cr-Mo; and Fe-B-Cr-Mo.
Twórcy
  • University of Oulu, Process Metallurgy Research Unit, P.O. Box 4300, FI-90014 University of Oulu, Finland
  • University of Oulu, Process Metallurgy Research Unit, P.O. Box 4300, FI-90014 University of Oulu, Finland
  • University of Oulu, Process Metallurgy Research Unit, P.O. Box 4300, FI-90014 University of Oulu, Finland
Bibliografia
  • [1] J. Miettinen, G. Vassilev, Arch. Metall. Mater. 59 (2), 601-607 (2014).
  • [2] J. Miettinen, G. Vassilev, Arch. Metall. Mater. 59 (2), 609-614 (2014).
  • [3] J. Miettinen, K. Lilova, G. Vassilev, Arch. Metall. Mater. 59 (4), 1481-1485 (2014).
  • [4] J. Miettinen, V.-V. Visuri, T. Fabritius, N. Milcheva, G. Vassilev, Arch. Metall. Mater. 64 (2), 451-456 (2019).
  • [5] J. Miettinen, V.-V. Visuri, T. Fabritius, N. Milcheva, G. Vassilev, Arch. Metall. Mater. 64 (4), 1239-1248 (2019).
  • [6] J. Miettinen, V.-V. Visuri, T. Fabritius, N. Milcheva, G. Vassilev, Arch. Metall. Mater. 64 (4), 1249-1255 (2019).
  • [7] J. Miettinen, V.-V. Visuri, T. Fabritius, G. Vassilev, Arch. Metall. Mater. 65 (2), 923-933 (2020).
  • [8] J. Miettinen, V.-V. Visuri, T. Fabritius, Acta Univ. Oul. C, 704 (2019).
  • [9] J. Miettinen, S. Louhenkilpi, H. Kytönen, J. Laine, Math. Comput. Simulat. 80 (7), 1536-1550 (2010).
  • [10] J. Miettinen, S. Louhenkilpi, V.-V. Visuri, T. Fabritius, IOP Conf. Ser. Mater. Sci. Eng. 529, article 012063 (2019).
  • [11] B. Hallemans, P. Wollants, J. R. Roos, Z. Metallkd. 85 (10), 676-682 (1994).
  • [12] J.-O. Andersson, B. Sundman, Calphad 11 (1), 83-92 (1987).
  • [13] B.-J. Lee, Calphad 17 (3), 251-268 (1993).
  • [14] J.-O. Andersson, Calphad 12 (1), 9-23 (1988).
  • [15] J. Miettinen, A. Pashkova, G. Vassilev, J. Phase Equilb. Diff. 36 (3), 60-67 (2014).
  • [16] J. Miettinen, V.-V. Visuri, T. Fabritius, Acta Univ. Oul. C, 758 (2020).
  • [17] C.E. Campbell, U.R. Kattner, Calphad 26 (3), 477-490 (2002).
  • [18] J.-O. Andersson, N. Lange, Metall. Trans. A 19 (6), 1385-1394 (1988).
  • [19] K.E. Spear, M.S. Wang, Calphad 5 (2), 109-113 (1981).
  • [20] Y. Yang, Y.A. Chang, Intermetallics 13 (2), 121-128 (2005).
  • [21] K. Yamada, H. Ohtani, M. Hasebe, J. Japan Inst. Met. 73 (3), 180-188 (2009).
  • [22] V.T. Vitusiewicz, A.A. Bondar, U. Hecht, O.A. Potazhevska, Y.Ya. Velikanova, J. Alloys and Compounds 655, 336-352 (2016).
  • [23] X.O. Yang, F. Yin, J. Hu, M. Zhao, Y. Liu, Calphad 59, 189-198 (2017).
  • [24] L.-M. Pan, Phase equilibria and elastic moduli of rapidly solidified Fe-Cr-B-Mo and Fe-Cr-Ni-B alloys, Doctoral Thesis, University of Surrey, Guildford, United Kingdom, 1992.
  • [25] H. Haschke, H. Nowotny, F. Benesovsky, Monatsch Chem. 97, 1459-1468 (1966).
  • [26] A. Leithe-Jasper, H. Klesnar, P. Rogl, M. Komai, K.I. Takagi, Nippon Kinzoku Gakkai-Shi 64 (2), 154-162 (2000).
  • [27] M. Tojo, T. Tokunaga, H. Ohtani, M. Hasebe, Calphad 34 (3), 263-270 (2010).
  • [28] H. Lukas, S.G. Fries, B. Sundman, Computational Thermodynamics: The Calphad Method, Cambridge University Press, Cambridge, United Kingdom (2007).
  • [29] E. Rudy, S. Windisch, USAF Tech. Report AFML-TR-65-2, Part V, Wright Patterson Air Force Base, OH, USA, 1969.
  • [30] E. Storms, B. Müller, J. Phys. Chem. 81 (4), 318-324 (1977).
  • [31] L. Brewer, R.H. Lamoreaux, II. Phase Diagrams, Molybdenum: Physico-chemical properties of its compounds and alloys, Special Issue No. 7, International Atomic Energy Agency, Vienna, Austria, 1980, pp. 193-365.
  • [32] Y.-C. Chuang, T.-L. Chuang, C.-H. Wu, Sci. Sinica, Peking 13, 1851 (1964).
  • [33] V.I. Kharitonov, M.S. Makunin, F.I. Shamray, Russ. Metall. (3), 113-116 (1971).
  • [34] A.M. Zakharov, I.L. Novikov, V.C. Polkin, Izv. Vyssh. Uchebn. Zaved. Tsvetn. Met. 14, 126-129 (1971).
  • [35] M. Morishita, K. Koyama, S. Yagi, G. Zhang, J. Alloys Compd. 314, 212-218. (2001).
  • [36] P. Franke, D. Neuschütz, B2, B-Mo, Binary Systems. Part 2: Elements and Binary Systems from B-C to Cr-Zr, IV Phys. Chem., vol. 19, Springer-Verlag, 2004, pp. 1-4.
  • [37] V.M. Maslov, A.S. Neganov, I.P. Borovinskaya, A.G. Merzhanov, Akad. Nauk. SSSR Fiz. Goren. Vzryva 14 (6), 73-82 (1978).
  • [38] E.G. Lavut, M.V. Chelovskaya, O.E. Kashireninov, J. Eng. Phys. Thermophys. 65 (4), 971-973 (1993).
  • [39] F. Baehren, D. Vollath, Planseeber. Pulvermet. 17 (3), 180-183 (1969).
  • [40] S. Omori, Y. Hashimoto, K. Koyama, J. Jpn. Inst. Met. 45, 1107-1111 (1981)
  • [41] S. Omori, Y. Hashimoto, K. Koyama, Kouon Gakkaishi 7 (5), 204-208 (1981).
  • [42] M.I. Serbova, “Investigation of Thermodynamic Properties of Borides of Transition Metals in High-temperature Range” (in Russian), Ph.D. thesis, Frantsevich Institute for Problems of Materials Science, Kyiv, Ukraine, 1982, p. 174.
  • [43] A.S. Bolgar, A.V. Blinder, M.I. Serbova, Powder Metall. Met. Ceram. 29 (12), 977-981 (1990).
  • [44] E.I. Gladyshevskii, T.F. Fedorov, Y.B. Kuz’ma, R. V. Skolozdra, Sov. Powder Metall. Ceram. 5 (4), 305-309 (1966).
  • [45] Y.B. Kuz’ma, V.S. Telegus, D.A. Kovalyk, Sov. Powder Metall. Met. Ceram. 8 (5), 403-410 (1969).
  • [46] A.M. Zakharov, S.I. Yudkovskii, Y.S. Popova, Inorganic Materials 18 (10), 1472-1474 (1982).
  • [47] W.T. Kim, B. Cantor, K. Clay, C. Small, In-situ particulate composites manufactured by hot extrusion of a melt spun amorphous Fe70-Cr18-Mo2-B18 alloy, in: Fundamental Relationships between Microstructure and Mechanical Properties of Metal Matrix Composites, P.K. Liaw and M.N. Gungor, eds., TMS-AIME, Warrendale, 1990, p. 89.
  • [48] C. Baliga, Results from the renewed contract with Rolls-Royce plc, 1989-1991, University of Surrey, UK, 1991.
  • [49] A.T. Dinsdale, SGTE unary database, version 4.4.
  • [50] I. Ansara, A.T. Dinsdale, M.H. Rand, COST 507 - Thermochemical database for light metal alloys, Volume 2, European Communities, Belgium, 1998.
  • [51] J.-O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Calphad 26 (2), 273-312 (2002).
  • [52] T. Ide, T. Ando, Metall. Trans. A 20 (1), 17-24 (1989).
  • [53] V. Raghavan, J. Phase Equilib. 24 (5), 449-450 (2003)
Uwagi
1. This study was executed within the framework of the Genome of Steel profiling project. The Academy of Finland (project 311934) is acknowledged for funding this study.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ac1a057-cf27-4d72-9e1b-19971d3f1290
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.