PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Galvanic coupling effects for module-mounting elements of ground-mounted photovoltaic power station

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This communication reports on the concerns associated with possible generation of galvanic coupling effects for construction materials that are used to manufacture mounting assemblies for ground-mounted photovoltaic (PV) power stations. For this purpose, six macro-corrosion galvanic cells were assembled, including: hot-dip Zn/Magnelis®-coated steel/Al and stainless steel (SS)/Al cells. Corrosion experiments involved continuous, ca. three-month exposure of these couplings in 3 wt.% NaCl solution, conducted at room temperature for a stable pH value of around 8. All corrosion cells were subjected to regular assessment of galvanic current-density and potential parameters, where special consideration was given to compare the corrosion behaviour of Zn-coated steel samples with that of Magnelis®-coated electrodes. Characterization of surface condition and elemental composition for examined materials was carried-out by means of SEM and EDX spectroscopy techniques.
Rocznik
Strony
22--27
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Department of Chemistry, Faculty of Environmental Protection and Agriculture, Plac Lodzki 4, 10-727 Olsztyn, Poland
autor
  • Corab Limited, M. Kajki 4, 10-547 Olsztyn, Poland
Bibliografia
  • 1. Aste, N. & Pero, C. D. (2010). Technical and economic performance analysis of large-scale ground-mounted PV plants in Italian context. Prog. Photovoltaics 18(5), 371–384. DOI: 10.1002/pip.984.
  • 2. Desideri, U., Proietti, S., Zepparelli, F., Sdringda, P. & Bini, S. (2012). Life cycle assessment of a ground-mounted 1778 kWp photovoltaic plant and comparison with traditional energy production systems. Appl. Energy 97, 930–943. DOI: 10.1016/j.apenergy.2012.01.055.
  • 3. Yang, R. J. (2015). Overcoming technical barriers and risks in the application of building integrated photovoltaics (BIPV): hardware and software strategies. Automat. Constr. 51, 92–102. DOI: 10.1016/j.autcon.2014.12.005.
  • 4. Fontana, M. G. (1987). Corrosion Engineering, 3rd ed., McGraw-Hill, New York, Chapter 3, p. 39.
  • 5. Roberge, P.R. (2000). Handbook of Corrosion Engineering, McGraw-Hill, New York, Chapter 5, p. 340.
  • 6. Uhlig, H. H. & Revie, R. W. (1985). Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, 3rd ed., John Wiley & Sons, New York, Chapter 6, p. 101.
  • 7. Kautek, W. (1988). The galvanic corrosion of steel coatings: aluminum in comparison to cadmium and zinc. Corr. Sci. 28(2), 173–199. DOI: 10.1016/0010-938X(88)90094-7.
  • 8. Magnelis®, industry.arcelormittal.com/magnelis, last accessed (07/04/2017).
  • 9. Hamlaoui, Y., Pedraza, F. & Tifouti, L. (2007). Comparative study by electrochemical impedance spectroscopy (EIS) on the corrosion resistance of industrial and laboratory zinc coatings. Am. J. Appl. Sci. 4(7), 430–438. DOI: 10.3844/ajassp.2007.430.438.
  • 10. Salgueiro Azevedo, M., Allely, C., Ogle, K. & Volovitch, P. (2015). Corrosion mechanisms of Zn(Mg, Al) coated steel in accelerated tests and natural exposure: 1. The role of electrolyte composition in the nature of corrosion products and relative corrosion rate. Corr. Sci. 90, 472–481. DOI: 10.1016/j.corsci.2014.05.014.
  • 11. Hakansson, E., Hoffman, J., Predecki, P. & Kumosa, M. (2017). The role of corrosion product deposition in galvanic corrosion of aluminum/carbon systems. Corr. Sci. 114, 10–16. DOI: 10.1016/j.corsci.2016.10.011.
  • 12. Sun, H., Liu, S. & Sun, L. (2013). A comparative study on the corrosion of galvanized steel under simulated rust layer solution with and without 3.5 wt.% NaCl. Int. J. Electrochem. Sci. 8, 3494–3509.
  • 13. Diler, E., Rouvellou, B., Rioual, S., Lescop, B., Nguyen Vien, G. & Thierry, D. (2014). Characterization of corrosion products of Zn and Zn–Mg–Al coated steel in a marine atmosphere. Corr. Sci. 87, 111–117. DOI: 10.1016/j.corsci.2014.06.017.
  • 14. Hamlaoui, Y., Pedraza, F. & Tifouti, L. (2008). Corrosion monitoring of galvanised coatings through electrochemical impedance spectroscopy. Corr. Sci. 50, 1558–1566. DOI: 10.1016/j.corsci.2008.02.010.
  • 15. Liu, Y., Li, H. & Li, Z. (2013). EIS Investigation and Structural Characterization of Different Hot-Dipped Zinc-Based Coatings in 3.5% NaCl Solution. Int. J. Electrochem. Sci. 8, 7753–7767.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ac088d1-3e49-423f-bdde-b88539d4e83e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.