PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deep learning-based fault diagnosis for marine centrifugal fan

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Marine centrifugal fans usually work in harsh environments. Their vibration signals are non-linear. The traditional fault diagnosis methods of fans require much calculation and have low operating efficiency. Only shallow fault features can be extracted. As a result, the diagnosis accuracy is not high. It is difficult to realize the end-to-end fault diagnosis. Combining the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and lightweight neural network, a fault classification method is proposed. First, the CEEMDAN can decompose the vibration signal into several intrinsic modal functions (IMF). Then, the original signals can be transformed into 2-D images through pseudocolour coding of the IMFs. Finally, they are fed into the lightweight neural network for fault diagnosis. By embedding a convolutional block attention module (CBAM), the ability of the network to extract critical feature information is improved. The results show that the proposed method can adaptively extract the fault characteristics of a marine centrifugal fan. While the model is lightweight, the overall diagnostic accuracy can reach 99.3%. As exploratory basic research, this method can provide a reference for intelligent fault diagnosis systems on ships.
Rocznik
Tom
Strony
112--120
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Shanghai Maritime University, College of Merchant Marine, Shanghai, China
autor
  • Shanghai Maritime University, College of Merchant Marine, Shanghai, China
autor
  • Shanghai Institute of Electronic Information Technology, School of Mechanical and Energy Engineering, Shanghai, China
autor
  • Shanghai Maritime University, College of Merchant Marine, Shanghai, China
Bibliografia
  • 1. Y. H. Tan, J. D. Zhang, H. Tian, D. Y. Jiang, L. Guo, G. M. Wang, Y. J. Lin, “Multi-label classification for simultaneous fault diagnosis of marine machinery: A comparative study,” Ocean Engineering, vol. 239, p. 109723, 2021, doi: 10.1016/j. oceaneng.2021.109723.
  • 2. G. H. Yan, Y. H. Hu, J. W. Jiang, “A Novel Fault Diagnosis Method for Marine Blower with Vibration Signals,” Polish Maritime Research, vol. 29, no. 2, pp. 77-86, 2022, doi:10.2478/ POMR-2022-0019.
  • 3. Y. Xie and T. Zhang, “Fault Diagnosis for Rotating Machinery Based on Convolutional Neural Network and Empirical Mode Decomposition,” Shock and Vibration, vol. 2017, pp. 11-12, 2017, doi: 10.1155/2017/3084197.
  • 4. Z. Guan, Z. Liao, K. Li, and P. Chen, “A Precise Diagnosis Method of Structural Faults of Rotating Machinery based on Combination of Empirical Mode Decomposition, Sample Entropy, and Deep Belief Network,” Sensors (Basel), vol. 19, no. 3, p. 591, 2019, doi: 10.3390/s19030591.
  • 5. M. Kuai, G. Cheng, Y. Pang, and Y. Li, “Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS,” Sensors (Basel), vol. 18, no. 3, p. 782, 2018, doi: 10.3390/s18030782.
  • 6. R. Nishat Toma, C.-H. Kim, and J.-M. Kim, “Bearing Fault Classification Using Ensemble Empirical Mode Decomposition and Convolutional Neural Network,” Electronics, vol. 10, no. 11, p. 1248, 2021, doi: 10.3390/ ELECTRONICS10111248.
  • 7. W. Jiang, Y. H. Xu, Z. Chen, N. Zhang, and J. Z. Zhou, “Fault diagnosis for rolling bearing using a hybrid hierarchical method based on scale-variable dispersion entropy and parametric t-SNE algorithm,” Measurement, vol. 191, p. 110843, 2022, doi: 10.1016/j.measurement.2022.110843.
  • 8. S. Zhou, M. H. Xiao, P. Bartos, M. Filip, and G. S. Geng, “Remaining Useful Life Prediction and Fault Diagnosis of Rolling Bearings Based on Short-Time Fourier Transform and Convolutional Neural Network,” Shock and Vibration, vol. 2020, p. 8857307, 2020, doi: 10.1155/2020/8857307.
  • 9. X. C. Zhang, H. W. Li, W. Y. Meng, Y. F. Liu, P. Zhou, C. He, Q. B. Zhao, “Research on fault diagnosis of rolling bearing based on lightweight convolutional neural network,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 44, no. 10, p. 462, 2022, doi:10.1007/s40430-022-03759-6.
  • 10. A. G. Howard et al., “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint, 2017, doi: 10.48550/arXiv.1704.04861.
  • 11. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 45104520, doi: 10.48550/arXiv.1801.04381.
  • 12. X. Y. Zhang, X. Y. Zhou, M. X. Lin, and J. Sun, “Shufflenet: An extremely efficient convolutional neural network for mobile devices,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 68486856, doi: 10.48550/arXiv.1707.01083.
  • 13. N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines for efficient CNN architecture design,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 116-131, doi: 10.48550/arXiv.1807.11164.
  • 14. S. Z. Hou, W. Guo, Z. Q. Wang, and Y. T. Liu, “Deep-LearningBased Fault Type Identification Using Modified CEEMDAN and Image Augmentation in Distribution Power Grid,” IEEE Sensors Journal, vol. 22, no. 2, pp. 1583-1596, 2022, doi: 10.1109/Jsen.2021.3133352.
  • 15. M. E. Torres, M. A. Colominas, G. Schlotthauer, and P. Flandrin, “A complete ensemble empirical mode decomposition with adaptive noise,” in 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2011, pp. 4144-4147, doi: 10.1109/ICASSP.2011.5947265.
  • 16. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Communications of the ACM, vol. 60, no. 6, pp. 84-90, 2017, doi: 10.1145/3065386.
  • 17. S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional block attention module,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 3-19, doi: 10.48550/arXiv.1807.06521.
  • 18. J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141, doi: 10.48550/ arXiv.1709.01507.
  • 19. L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine Learning Research, vol. 9, pp. 2579-2605, 2008.
  • 20. K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6abdefe4-1518-4d52-aea7-e8dd02d3666e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.