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ABSTRACT

Marine centrifugal fans usually work in harsh environments. Their vibration signals are non-linear. The traditional 
fault diagnosis methods of fans require much calculation and have low operating efficiency. Only shallow fault features 
can be extracted. As a result, the diagnosis accuracy is not high. It is difficult to realize the end-to-end fault diagnosis. 
Combining the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and lightweight 
neural network, a fault classification method is proposed. First, the CEEMDAN can decompose the vibration signal into 
several intrinsic modal functions (IMF). Then, the original signals can be transformed into 2-D images through pseudo-
colour coding of the IMFs. Finally, they are fed into the lightweight neural network for fault diagnosis. By embedding 
a convolutional block attention module (CBAM), the ability of the network to extract critical feature information 
is improved. The results show that the proposed method can adaptively extract the fault characteristics of a marine 
centrifugal fan. While the model is lightweight, the overall diagnostic accuracy can reach 99.3%. As exploratory basic 
research, this method can provide a reference for intelligent fault diagnosis systems on ships.
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INTRODUCTION

Marine centrifugal fans are essential equipment for ships. 
They are mainly responsible for cabin ventilation, the boilers’ 
induced air, ventilation of inert gas systems, etc. Damage to them 
will increase the cost of ship maintenance and affect the safety 
of ship operations. Therefore, conducting condition testing 
and fault diagnosis for the marine centrifugal fan is necessary. 
In the past, this work was accomplished through reactive 
maintenance and time-based maintenance, which depends 
heavily on human cognition and experience [1]. It is difficult 
to meet the development needs of large-scale, intelligent and 
unmanned ships [2].

Traditional machine learning fault diagnosis methods can only 
extract shallow features, and rely heavily on expert experience. 
In addition, they have poor robustness and generalization 
ability when dealing with massive data. With the continuous 
development of technology, deep learning fault diagnosis 
methods are developing rapidly. The convolutional neural 
network (CNN) is the most popular. Xie et al. [3] constructed 
an empirical mode decomposition (EMD)-CNN model, which 
enables the classification of faults in marine blowers. Guan et 
al. [4] combined EMD-sample entropy and a deep confidence 
network to realize rotating machinery fault diagnosis. However, 
EMD has defects, including mode mixing, false mode, and 
endpoint effects [5]. Rafia et al. [6] proposed the model of 
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ensemble EMD (EEMD)‒continuous wavelet transform (CWT)-
CNN, which realized the accurate classification of connecting 
rod bearings. EEMD is an improvement based on EMD. But 
the heavy computing load because of the added noise seriously 
reduces the executive efficiency of EEMD [7]. In [8], the images 
were obtained by short-time Fourier transform (STFT). Then, 
they were fed into the CNN to implement the fault diagnosis 
of bearings. Although using CNN for fault diagnosis improves 
the feature extraction ability and generalization ability, it also 
has some adverse effects. That is, with the increasing depth of 
the model, some current CNN models have problems such as 
a too complex structure, too large scale, and they have difficulty 
converging quickly [9]. In addition, the commonly used time‒
frequency analysis methods have many drawbacks. For example, 
STFT has difficulty in describing the local characteristics of the 
signals and it cannot be applied for the analysis of non-linear 
signals. CWT requires the selection of wavelet basis functions. 
These shortcomings do not apply to the fault diagnosis of marine 
centrifugal fans, however.

The lightweight CNN has been gaining popularity. 
MobileNetV1 [10] uses depth-separable convolution (DSC) 
to reduce model complexity. MobileNetV2 [11] improves the 
feature extraction ability by introducing the idea of a residual. 
ShuffleNetV1 [12] proposed group convolution (GC) and channel 
shuffle (CS), which can reduce the amount of computation. Ma 
et al. [13] designed ShuffleNetV2 based on summarizing four 
criteria affecting the network operation efficiency. Compared 
with the traditional CNN, the above lightweight CNN has 
fewer parameters and more efficient operation. However, when 
there is interference from irrelevant signals, such as noise, the 
performance of the model will be affected.

To address these problems, this paper combines CEEMDAN 
with CBAM-ShuffleNetV2 for fault classification of marine 
centrifugal fans. Referring to [14], the 1-D signals are converted to 
2-D images. The main contributions of this paper are as follows:
(1)  The vibration signal was decomposed by CEEMDAN. This 

can not only solve the problems of modal aliasing and noise 
transfer, but also preserve the main components of signals.

(2)  Through the signal-to-image conversion, time‒frequency 
maps can be obtained. These can describe the global and 
local characteristics of non-linear signals.

(3)  Using the lightweight CNN, which can overcome the 
shortcomings of traditional network models, such as 
complex calculation, low diagnostic accuracy, etc., CBAM 
is introduced to improve the model’s ability to extract critical 
feature information.

BACKGROUND THEORY

CEEMDAN

EEMD and complete EEMD (CEEMD) are improved 
algorithms based on EMD. However, these two improved 
algorithms cannot deal with residual noise, which is not 
conducive to subsequent signal analysis.

Torres et al. [15] proposed CEEMDAN based on EMD and 
EEMD. It improves this problem in two ways: (1) The noise is 
not directly fed into the native signal, but the noise component 
after EMD decomposition is added; (2) After CEEMDAN 
decomposes the signal to obtain the first IMF, the overall 
average is performed. CEEMDAN not only reduces the amount 
of computation but also improves the signal decomposition 
accuracy. The CEEMDAN decomposition steps are as follows:

After adding the signal x(t) with white noise, it can be 
expressed as:

x(t) + (–1)q ευi(t)      (1)

where q is equal to 1 or 2.
C1

j is the first-order IMF obtained from the EMD 
decomposition of the new signal. It can be obtained as:

E[x(t) + ευi(t)] = C1
j + rj    (2)

The obtained IMF components are then averaged. This can 
be obtained as:

C1(t)  = 1 N

j=1N Σ C1
j (t)     (3)

where N denotes the number of IMFs.
The first residual is denoted as:

r1(t) = x(t) – C1(t)      (4)

The same white noise is added to r1(t) to produce a new 
signal, which is decomposed by EMD. The obtained IMF 
components are then averaged. This can be obtained as:

C2(t) = 1 N

j=1N Σ D1
j (t)     (5)

where D1
j denotes the first IMF, and N denotes the number of 

IMFs.
The second residual is denoted as:

r2(t) = r1(t) – C2(t)      (6)

These steps are repeated until EMD cannot decompose the 
signal further. The original signal is decomposed into:

x(t) = 
K

k=1
Σ Ck(t) + rk(t)     (7)

where K is a positive integer.

GC AND CS

Standard convolution performs repeated convolution 
operations on the information of each channel of the input 
feature map. Assume that the convolution kernel size is D×D and 
the input feature channels are W. The number of convolution 
kernels is B. The number of standard convolution parameters is:
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Q = D × D × W × B     (8)

GC is different from standard convolution. It first groups 
the input feature channels and convolution kernels and then 
convolves the operation. Fig. 1 shows the GC process. The 
number of GC parameters is:

Q = D × D × G
W  × B     (9)

where G is the number of groups.

Fig. 1. The GC process

The number of parameters for GC is smaller. Krizhevsky et al. 
[16] pointed out that GC prevents overfitting and facilitates 
regularization. GC reduces the amount of computation. But 
the groups are independent of each other and there is no 
intermingling of information. By introducing CS, information 
blending between groups can be realized. Fig. 2 shows the CS 
process.

Fig. 2. The CS process

DSC

For standard convolution, each convolution kernel performs 
a convolution operation on all channels of the input. Unlike 
standard convolution, DSC is divided into depthwise convolution 
(DWC) and pointwise convolution (PWC) operations. DWC 
means that each convolution kernel handles only one channel 
of input. PWC is a 1×1 unit convolution. Fig. 3 shows the DSC 
process.

Fig. 3. The DSC process

SHUFFLENETV2 UNIT

Fig. 4 shows the ShuffleNetV2 basic units. In Unit 1, the input 
channels are divided equally. The left half does not perform any 
operations. The right half contains two 1×1 convolutions and 
one DWC. Then, the two branches are cascaded together. Finally, 
the CS operation is carried out to ensure the full integration of 
feature information. Unit 2 is the down-sampling module. Both 
branches perform a 3×3 deep convolution with step size 2. The 
length and width are reduced by half, and the output channels 
are doubled.

Fig. 4. Two basic units of ShuffleNetV2

CBAM

Woo et al. [17] proposed the CBAM. In contrast to SENet 
[18], CBAM focuses not only on the importance of each channel 
feature but also on the importance of the local features of each 
channel. Fig. 5 shows the CBAM structure, which is a simple 
one. It can be easily embedded in the CNN while remaining 
lightweight. It mainly includes the channel attention mechanism 
(CAM) and spatial attention mechanism (SAM). Their structures 
are shown in Fig. 6 and 7. The CAM performs average pooling 
and maximum pooling on the input feature maps. It yields two 
C×1×1 features, which are fed into a multiple layer perceptron 
(MLP). Then the element-by-element summation is performed. 
The activation function Sigmoid is used to obtain the weight 
coefficient Mc, which is multiplied by Fc. The output of CAM is 
used as the input of SAM. After SAM, the spatial output features 
are obtained, which are multiplied by the CAM output. The 
final output is obtained.
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Fig. 8. Architecture of CBAM-ShuffleNet unit

EXPERIMENTAL ANALYSIS  
AND DISCUSSION

FAULT DIAGNOSIS PROCESS

The fault diagnosis process consists of four main stages: 
signal acquisition, image conversion, defining the lightweight 
CNN, and fault classification. Fig. 9 shows the fault diagnosis 
process. The detailed steps are as follows:
Step 1:  Vibration signals of different health states are collected.
Step 2:  CEEMDAN decomposes the vibration signal to get 

several IMF components, which are arranged in order 
from low to high frequency. The time‒frequency matrix 
can be obtained, and the pseudo-colour coding is used 
to get the 2-D colour time‒frequency maps.

Fig. 5. The structure of CBAM

Fig. 6. The structure of CAM

Fig. 7. The structure of SAM

THEORETICAL MODEL

Among the above two units of ShuffleNetV2, the more efficient 
Unit 1 is adopted. The CBAM is embedded in ShuffleNetV2. 
Fig. 8 is the CBAM-ShuffleNet unit. This module retains the 
maximum amount of light weight in the basic unit. This can 
enhance the extraction of crucial information and suppress 
irrelevant information, such as redundancy and noise.

Fig. 9. Fault diagnosis process
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Step 3:  The data sets are divided into training and testing sets. 
Then, the training sets are fed into the network for 
training.

Step 4:  The testing sets are fed into the lightweight CNN for 
adaptive fault feature extraction and classification.

DATA PRE-PROCESSING

The experimental marine centrifugal fan is driven by 
a three-phase asynchronous motor. An ICP vibration detector 
developed by Beijing East Vibration and Noise Technology 
Institute is adopted. The vibration sensor uses a magnetic 
suction sensor with a sensitivity of 10.20 mV/g and a bias voltage 
of 12.40 V. The sampling time is one second. The sampling 
frequency is 1652 Hz. Seven modes are set: normal, motor 
short circuit, fan blocking, loose bolts, impeller unbalanced, 
loose bolts and impeller unbalanced compound failure, and fan 
and motor coupling misalignment. The working conditions are 
numbered sequentially from A to G. 1200 groups of samples 
are collected for each working condition. 800 groups of samples 
are randomly selected for each working condition as training 
samples, and the rest are testing samples. The motor of the 
fan has a rated voltage of 380 V, rated current of 4.6 A, rated 
power of 1.1 kW, rated frequency of 50 Hz, and rated speed of  
1400 r/min. Normal and short circuit faults are taken as examples 
for spectrum analysis. The 0~250 Hz spectrum amplification 
diagrams are shown in Fig. 10. The rotation frequency is 23.3 Hz 
(fb). Under normal conditions, the vibration is mainly based 
on the fundamental frequency (23.3 Hz). The amplitude is 
small at the multiplier and rated frequency. The signal shock 
phenomenon is not obvious. When the motor is short-circuited, 
the magnetic field is distorted and the original magnetic field 
balance is destroyed. The vibration amplitude varies significantly 
at the fundamental frequency, multiplier frequency, and rated 
frequency. The amplitude is up to 0.137 m/s2. It is a three-
phase asynchronous motor with 2 pairs of poles. So, at triple 
and quadruple rotation frequencies, the amplitude changes 
significantly. The maximum deviation of the extracted fault 
characteristic frequency is 0.7 Hz. Fault characteristics are very 
obvious. This method is also applicable to other fault analysis 
of the centrifugal fan.

Fig. 10. The time domain waveforms for each operating condition

The original signals are decomposed by CEEMDAN. Fig. 11 
provides the decomposition results of the first three working 
conditions. It can be seen that the decomposition process does 
not produce modal mixing and eliminates the interference of 
redundant information.

Fig. 11. Decomposition results for the first three working conditions

The time‒frequency matrix can be obtained by CEEMDAN 
decomposition, and 2-D maps can be obtained by signal-to-
image conversion. Fig. 12 shows the colour time‒frequency 
maps for each working condition. Under normal conditions, the 
signal energy is essentially uniformly distributed in the time-
scale plane. The analysis continues with the example of the short 
circuit fault. There is obvious periodic shock energy at 0~100 Hz 
and 400~500 Hz. The distribution of energy has a certain 
time interval. For example, there are some significant signal 
components occur at 0.0702 s, 0.1033 s, 0.1338 s, and 0.1608 s. 
The time interval is about 0.0318 s. Between the two energy 
peaks, there are two energy-low parts. That is, the energy change 
time interval is 0.0106 s. The frequency is about 94.3 Hz, which 
is close to the motor short-circuit fault frequency (93.929 Hz). 
The 2-D maps retain the fault characteristic information very 
well. There are significant differences in the energy distribution 
characteristics among the faults, i.e., their energy intensity and 
energy fluctuation time are significantly different. They fully 
demonstrate the time‒frequency variation characteristics of the 
fault, facilitating subsequent feature extraction.

Fig. 12. 2-D time-frequency maps

MODEL TESTING AND FINE-TUNING

The deep learning is configured as comprising an AMD 
Ryzen 7 5800H CPU@3.2GHz, NVIDIA GeForce RTX 3060 
Laptop GPU, and win11 operating system. The number of 
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CBAM-ShuffleNet units can affect the network performance. 
We use a five-fold cross-validation method to compare. The 
number of CBAM-ShuffleNet units is taken as 2, 3, 4, and 5, 
respectively. Noise with a signal-to-noise ratio (SNR) of -10dB 
is fed to the native signal. Table 1 shows the diagnostic accuracy 
for different numbers of units. Floating points of operations 
(FLOPs) are used to measure the network complexity. The larger 
the number of FLOPs, the more complex the network. With 
the increasing number of units, the numbers of parameters 
and FLOPs increase significantly, which makes the model less 
efficient. Although the efficiency of 3 units is slightly lower than 
that of 2 units, the highest diagnostic accuracy is achieved with 3 
units. Therefore, the number of units selected is 3.

Tab. 1. Comparison of results of different numbers of units

Number 
of units FLOPs/105 Number of 

parameters/105
Training 

time/s Accuracy/%

2 0.65 0.32 1542 75.8

3 1.68 0.83 2285 88.7

4 8.39 4.18 3671 85.7

5 30.65 15.36 6087 85.4

Adam optimization parameters are used to update the 
network parameters. They are not only good at handling sparse 
gradients but can also handle non-smooth targets. First-order 
and second-order moment estimation preserve the adaptive 
learning rate for each parameter adaptation. After each iteration, 
the learning rate updates the interval, reducing the range of 
parameter fluctuations, speeding up convergence, and running 
efficiently. The starting parameters are shown in Table 2. The 
model computation is further reduced by global average pooling 
(GAP). The dropout layer can alleviate overfitting. Softmax is 
used for fault classification. Table 3 shows the optimal network 
parameters.

Tab. 2. Starting parameters

Name of parameter Value

InitialLearnRate 0.001

LearnRateDropPeriod 10

LearnRateDropFactor 0.05

L2Regularization 0.004

MaxEpochs 20

MiniBatchSize 50

RESEARCH RESULTS

The training cycle is 20 rounds in total, the number of 
iterations in each round is 98, and the maximum number of 
iterations is 1960. Fig. 13 shows the diagnostic accuracy and 
the loss function images. The loss function gradually decreases 
until it tends to stabilize. At the same time, the accuracy of 
the training sets gradually increases and finally reaches 100%. 
This shows that this method is stable and converges quickly. 
The accuracy of the test sets can reach 100%. This network has 

no overfitting. The training time is about 56 seconds, and the 
testing time is about 18 seconds. It responds quickly.

Fig. 13. Accuracy and loss function images

Fig. 14. The confusion matrix of the testing set
To reflect the diagnostic accuracy of the network model for 

different working conditions, Fig. 14 is the confusion matrix of 
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Structure 
 name Parameter values Output

1 Input Layer 224×224 224×224

2 Standard 
convolution layer 24@3×3×3; stride=2 112××112

3 CBAM-
ShuffleNet unit 1

Con (64@1×1×3; stride=1)
DWC (64@3×3×3; stride=1)
Con (64@1×1×3; stride=1)

56×56

4 CBAM-
ShuffleNet unit 2

Con (64@1×1×3; stride=1)
DWC (64@3×3×3; stride=1)
Con (64@1×1×3; stride=1)

28×28

5 AVG pool 3×3; stride=2 16×16

6 CBAM-
ShuffleNet unit 3

Con (128@1×1×3; stride=1)
DWC (128@3×3×3; stride=1)
Con (128@1×1×3; stride=1)

8×8

7 GAP – 1×1

8 Dropout 0.5 –

9 FC – 1×1×7

10 Softmax – 1×1×7

Tab. 3. Network Parameters
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the testing sets. Green indicates the correct classification, and red 
means the opposite. The network model is slightly less sensitive 
to working conditions A, C, and D. But the diagnostic accuracy 
of the other working conditions can reach 100%. The validity 
of this method is verified based on the test sets.

T-SNE [19] can map high-dimensional nonlinear data into 
2-D space. Based on this, the learning process within the network 
is visualized by T-SNE. Fig. 15 shows the learning process. 
At the input layer, different fault characteristic information 
intersects each other and it is not easy to separate them. After 
the first layer of convolution, there is a trend of clustering the 
feature information of the same working condition. With the 
deepening of the network model, it is possible to distinguish 
clearly between different working conditions. It follows that the 
proposed method can classify effectively.

Fig. 15. Visualization results: (a) input layer; (b) convolution layer 1;  
(c) unit 1; (d) unit 2; (e) unit 3; (f) FC

COMPARISON OF OTHER MODELS

Further, the proposed method is compared with ShuffleNetV1/
V2, MobileNetV2, and ResNet [20]. Noise with SNR of -20dB, 
-15dB, -10dB, and -5dB is added to the original signal, respectively. 
Then these samples are fed into the different network models 
for fault classification. Table 4 shows the comparison of the 
other methods. There is no significant change in the number of 
parameters and FLOPs, but the running time fluctuates slightly. 
MobileNetV2 has the simplest structure, so it has the highest 
efficiency. ShuffleNetV2 is more efficient than V1 because 
V2 removes fragmentation and element-by-element addition 
operations. The proposed method had slightly more FLOPs 
than ShuffleNetV2/V1 due to the embedding of CBAM in the 
model. But, the structure of CBAM has less impact on the model. 
The ResNet network model is deeper, so there are more FLOPs, 
resulting in the lowest operational efficiency.

Fig. 16 shows the diagnostic accuracy and average recall 
of different models. With the noise intensity decreasing, the 
classification accuracy and recall rate of the different network 
models gradually increased. Through comparative analysis, 
the proposed method has strong robustness while ensuring 
the model’s light weight.

Tab. 4. Comparison of different methods
SNR/

dB Network model FLOPs/105 Number of 
parameters/105

Training 
time/s

-20

ResNet 50.27 25.07 11826

ShuffleNetV1 1.38 0.68 6143

ShuffleNetV2 1.52 0.76 2183

MobileNetV2 1.41 0.57 2076

The proposed 
method 1.68 0.83 2253

-15

ResNet 50.27 25.07 11843

ShuffleNetV1 1.38 0.68 6128

ShuffleNetV2 1.52 0.76 2164

MobileNetV2 1.41 0.57 2018

The proposed 
method 1.68 0.83 2241

-10

ResNet 50.27 25.07 11864

ShuffleNetV1 1.38 0.68 6139

ShuffleNetV2 1.52 0.76 2151

MobileNetV2 1.41 0.57 2031

The proposed 
method 1.68 0.83 2285

-5

ResNet 50.27 25.07 11907

ShuffleNetV1 1.38 0.68 6157

ShuffleNetV2 1.52 0.76 2162

MobileNetV2 1.41 0.57 2043

The proposed 
method 1.68 0.83 2261

O
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l s
ig

na
l

ResNet 50.27 25.07 11816

ShuffleNetV1 1.38 0.68 6121

ShuffleNetV2 1.52 0.76 2155

MobileNetV2 1.41 0.57 2037

The proposed 
method 1.68 0.83 2273

Fig. 16. Comparison chart of diagnostic accuracy and average recall rate
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CONCLUSION

This paper proposes and validates a  fault classification 
method for a marine centrifugal fan based on a combination 
of signal-to-image conversion and lightweight CNN. The main 
conclusions are as follows:
(1)  CEEMDAN is used to decompose the original signal. The 

problems of mode aliasing and complex calculation are 
overcome effectively, which benefits the subsequent signal 
analysis.

(2)  The 1-D signals are transformed into 2-D images through 
signal-to-image conversion. They can show the invisible 
information of the original signal, such as texture 
characteristics and energy distribution. In this way, the 
marine centrifugal fan’s failure can be reflected.

(3)  Lightweight CNN is used for fault adaptive extraction, 
which reduces the complexity of the mode and improves the 
operation efficiency. It can realize end-to-end fault diagnosis. 
The overall diagnosis accuracy can reach 99.3%. Compared 
with other models, this model has a high diagnostic accuracy 
while maintaining light weight. In addition, the model has 
good noise immunity.

As exploratory basic research, this method can provide 
a reference for the fault diagnosis of other equipment in the 
cabin and also for the research of intelligent fault diagnosis 
systems of ships. It should be noted that multiple compound 
faults may exist in marine centrifugal fans. In future research 
work, the diversity of the data set should be further improved. 
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