PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Developing Convolutional Neural Network for Recognition of Bone Fractures in X-ray Images

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the domain of clinical imaging, the exact and quick identification proof of bone fractures assumes a crucial part in a pivotal role in facilitating timely and effective patient care. This research tends to this basic need by harnessing the force of profound learning, explicitly utilizing a Convolutional Neural Network (CNN) model as the foundation of our technique. The essential target of our study was to improve the mechanized recognition of bone fractures in X-ray images, utilizing the capacities of deep learning algorithms. The use of a CNN model permitted us to successfully capture and learn intricate patterns and features within the X-ray images, empowering the framework to make exact fracture detections. The training process included presenting the model to a various dataset, guaranteeing its versatility to an extensive variety of fracture types. The results of our research show the excellent performance of the CNN model in fracture detection, where our model has achieved an Average Precision 89.5%, Average Recall 87%, and the overall Accuracy 91%. These metrics assert the vigour of our methodology and highlight the capability of deep learning in medical image analysis.
Twórcy
autor
  • Department of Information Technology, Technical College of Management, Al-Furat Al-Awsat Technical University, Kufa, Iraq
  • Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
  • Department of Medical Physics Sciences, Al-Mustaqbal University, Hilla, Iraq
Bibliografia
  • 1. Edison G. Transforming medical decision-making: A comprehensive review of AI’s impact on diagnostics and treatment. BULLET: Jurnal Multidisiplin Ilmu. 2023; 2(4): 1121–1133.
  • 2. Joshi D., Singh T.P. A survey of fracture detection techniques in bone X-ray images. Artificial Intelligence Review. 2020; 53(6): 4475–4517. https://doi.org/10.1007/s10462-019-09799-0.
  • 3. Malone J. X-rays for medical imaging: Radiation protection, governance and ethics over 125 years. Physica Medica: European Journal of Medical Physics. 2020; 79: 47–64. https://doi.org/10.1016/j.ejmp.2020.09.012.
  • 4. Sarvamangala D.R., Kulkarni R.V. Convolutional neural networks in medical image understanding: A survey. Evolutionary Intelligence. 2022; 15(1): 1–22. https://doi.org/10.1007/s12065-020-00540-3.
  • 5. Zhang X., Xu J., Yang J., Chen L., Zhou H., Liu X., et al. Understanding the learning mechanism of convolutional neural networks in spectral analysis. Analytica Chimica Acta. 2020; 1119: 41–51. https://doi.org/10.1016/j.aca.2020.03.055.
  • 6. Guan B., Yao J., Zhang G., Wang X. Thigh fracture detection using deep learning method based on new dilated convolutional feature pyramid network. Pattern Recognition Letters. 2019; 125: 521–526. https://doi.org/10.1016/j.patrec.2019.06.015.
  • 7. Guan B., Zhang G., Yao J., Wang X., Wang M. Arm fracture detection in X-rays based on improved deep convolutional neural network. Computers & Electrical Engineering. 2020; 81: 106530. https://doi.org/10.1016/j.compeleceng.2019.106530.
  • 8. Wang M., Yao J., Zhang G., Guan B., Wang X., Yueming Z. ParallelNet: Multiple backbone network for detection tasks on thigh bone fracture. Multimedia Systems. 2021; 27: https://doi.org/10.1007/s00530-021-00783-9.
  • 9. Ma Y., Luo Y. Bone fracture detection through the two-stage system of Crack-Sensitive Convolutional Neural Network. Informatics in Medicine Unlocked. 2021; 22: 100452. https://doi.org/10.1016/j.imu.2020.100452.
  • 10. Wu H.-Z., Yan L.-F., Liu X.-Q., Yu Y.-Z., Geng Z.-J., Wu W.-J., et al. The feature ambiguity mitigate operator model helps improve bone fracture detection on X-ray radiograph. Scientific Reports. 2021; 11(1): 1589. https://doi.org/10.1038/s41598-021-81236-1.
  • 11. Qi Y., Zhao J., Shi Y., Zuo G., Zhang H., Long Y., et al. Ground truth annotated femoral X-ray image dataset and object detection based method for fracture types classification. IEEE Access. 2020, 8, 189436–189444. https://doi.org/10.1109/ACCESS.2020.3029039.
  • 12. Thian Y.L., Li Y., Jagmohan P., Sia D., Chan V.E.Y., Tan R.T. Convolutional neural networks for automated fracture detection and localization on wrist radiographs. Radiology: Artificial Intelligence. 2019; 1(1): e180001. https://doi.org/10.1148/ryai.2019180001.
  • 13. Plaksyvyi A., Skublewska-Paszkowska M., Powroznik P. 2023. A comparative analysis of image segmentation using classical and deep learning approach. Advances in Science and Technology. Research Journal. 17(6); 127–139. https://doi.org/10.12913/22998624/172771.
  • 14. Zamir M., Ali N., Naseem A., Frasteen A.A., Zafar B., Assam M., Othman M., Attia E. Face detection & recognition from images & videos based on CNN & Raspberry Pi. Computation. 2022; 10(9): 148. https://doi.org/10.3390/computation10090148.
  • 15. Yang F., Choi W., Lin Y., Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June, 2016, 2129–2137. https://doi.org/10.1109/CVPR.2016.234.
  • 16. Albawi S., Mohammed T.A., Al-Zawi S. Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August, 2017, 1–6. https://doi.org/10.1109/ICEngTechnol.2017.8308186.
  • 17. Jie H., Wengang Z., Houqiang L., Weiping L. Sign language recognition using 3D convolutional neural networks. In: 2015 IEEE International Conference on Multimedia and Expo (ICME), Turin, 29 June-3 July, 2015, 1–6, https://doi.org/10.1109/ICME.2015.7177428.
  • 18. Basha S.H.S., Dubey S.R., Pulabaigari V., Mukherjee S. Impact of fully connected layers on performance of convolutional neural networks for image classification. Neurocomputing. 2020; 378: 112–119. https://doi.org/10.1016/j.neucom.2019.10.008.
  • 19. Shorten C., Khoshgoftaar T.M. A survey on image data augmentation for deep learning. Journal of Big Data. 2019; 6(1): 60. https://doi.org/10.1186/s40537-019-0197-0.
  • 20. Wong T.T., Yeh P.Y. Reliable accuracy estimates from k-fold cross validation. IEEE Transactions on Knowledge and Data Engineering. 2020; 32(8): 1586–1594. https://doi.org/10.1109/TKDE.2019.2912815.
  • 21. Haghighi S., Jasemi M., Hessabi S., Zolanvari A., 729. PyCM: Multiclass confusion matrix library in Python. Journal of Open Source Software. 2018; 3(25): 729. https://doi.org/10.21105/joss.00729.
  • 22. Markoulidakis I., Kopsiaftis G., Rallis I., Georgoulas I., editors. Multi-Class Confusion Matrix Reduction method and its application on Net Promoter Score classification problem. In: Proceedings of the 14th PErvasive Technologies Related to Assistive Environments Conference, Corfu, Greece, June, 2021, 412–419, https://doi.org/10.1145/3453892.3461323.
  • 23. Roth K., Pemula L., Zepeda J., Schölkopf B., Brox T., Gehler P. Towards total recall in industrial anomaly detection. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June, 2022, 14298–14308. https://doi.org/10.1109/CVPR52688.2022.01392.
  • 24. MacEachern S.J., Forkert N.D. Machine learning for precision medicine. Genome. 2021; 64(4): 416-425. https://doi.org/10.1139/gen-2020-0131.
  • 25. Fu G., Sun P., Zhu W., Yang J., Cao Y., Yang M.Y., et al. A deep-learning-based approach for fast and robust steel surface defects classification. Optics and Lasers in Engineering. 2019; 121: 397–405. https://doi.org/10.1016/j.optlaseng.2019.05.005.
  • 26. Karpiński R., Krakowski P., Jonak J., Machrowska A., Maciejewski M. 2023. Comparison of Selected Classification Methods Based on Machine Learning as a Diagnostic Tool for Knee Joint Cartilage Damage Based on Generated Vibroacoustic Processes. Applied Computer Science, 19(4), 136–150. https://doi.org/10.35784/acs-2023-40.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ab55d4e-7dab-42e0-87a2-80d22146d757
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.