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INTRODUCTION

As of late, the intersection of medical imag-
ing and AI has introduced a new period in medi-
cal care, promising huge headways in diagnostic 
accuracy [1]. One basic area of concentration in-
side this field is the automatic detection of bone 
fractures in X-ray images. As a crucial part of 
medical diagnosis, X-ray assessments give price-
less bits of knowledge into the inner structures of 
the human body. Nonetheless, the interpretation 
of X-ray images, especially the detection of bone 
fractures, is a complex and tedious errand that 
frequently requires the mastery of talented radi-
ologists. The integration of deep learning tech-
niques in X-ray image analysis offers a promising 
answer for upgrading the effectiveness and exact-
ness of bone fracture detection [2]. This research 

attempts to add to the continuous endeavours in 
utilizing deep learning methods for the acknowl-
edgment of bone fractures in X-ray images. 

The pervasiveness of breaks as an outcome 
of injury, osteoporosis, and other ailments re-
quires an effective framework for their early 
identification. Manual assessment of X-rays, 
however completed via seasoned professionals, 
can be inclined to human blunder and is restrict-
ed by the requirements of time and resources 
[3]. The use of deep learning models aims to 
mitigate these difficulties via automating the 
fracture detection process.

The essential inspiration for this study lies in 
the possibility to change the area of radiology by 
harnessing the capacities of deep learning. Con-
volutional neural networks (CNNs) have exhib-
ited excellent performace in image recognition, 
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and their application to clinical imaging, in-
cluding the understanding of X-rays, has shown 
promising outcomes [4]. By training these neural 
networks on assorted datasets of X-ray images 
portraying different sorts of fractures, the model 
can learn complex patterns and features related 
to various fracture types [5]. The goal is to de-
velop a model that distinguishes fractures pre-
cisely as well as generalizes well to deal with a 
large number of scenarios, across different patient 
populations. The utilisation of deep learning for 
the detection of bone fractures in X-ray images 
addresses a huge step towards working on the ef-
fectiveness of diagnostic processes in radiology.

BACKGROUND

The researchers in [6] discussed a fracture de-
tection method using a new deep learning method 
called dilated convolutional feature pyramid net-
work (DCFPN). The method outperform FPN 
with 82.1% average precision in identifying thigh 
breaks. The DCFPN uses dilated convolutions in 
the backbone network and a feature pyramid net-
work for multi-scale feature extraction. The net-
work design incorporates a region-based convolu-
tional neural network for exact detection. The pro-
posed method shows solid potential for practical 
clinical applications.

The proposed methodology described in [7] 
for the detection of arm fracture in X-ray images 
is based on an improved two-stage R-CNN meth-
od. The methodology incorporates image pre-
processing, a novel backbone network, region 
proposal network, receptive field adjustment, RoI 
pooling layer, and final classification. The image 
pre-processing includes morphological opera-
tions and pixel value transformation to improve 
image quality. As far as results, the proposed deep 
learning methodology achieved an average preci-
sion (AP) of 62.04%. The system used a 3392 im-
ages for training and 612 images for testing.

The framework portrayed in [8] is called Par-
allelNet, which is intended for identifying thigh 
bone breaks in X-ray images. ParallelNet com-
prises of different backbone networks with dilat-
ed convolution in every pathway. The backbone 
networks create include maps with various recep-
tion fields, and a backward connection is utilized 
to interface feature maps from various stages. 
Moreover, a pyramid network structure is used 
to produce features including maps for fracture 

detection in different scales. The region proposal 
network (RPN) is utilized to detect ROIs (re-
gions of interest) which contain fractures. As far 
as results, the analyses on the thigh fracture da-
taset showed promising results. The ParallelNet 
accomplished a normal accuracy (AP) of 87.8% 
for AP50 and 49.3% for AP75, outperforming the 
performance of other algorithms such as DCFPN.

The framework proposed in [9] comprises a 
two-stage approach for identifying bone fractures 
in X-ray images. The principal stage includes uti-
lizing Faster R-CNN to distinguish various kinds 
of bones in the X-ray images by segmenting and 
classifying them. The second stage uses a crack-
sensitive convolutional neural network (CrackNet) 
to distinguish conceivable break districts inside the 
identified bones. This two-stage framework means 
to ease the weight on specialists by giving possible 
fractureareas in X-ray images. As far as results, the 
proposed framework accomplished an accuracy 
of 88.39%, a recall of 87.5%, and a precision of 
89.09% on the bone fracture detection task.

The framework described in [10] depends on 
the ResNeXt+FPN structure. The model com-
prises an initial encoder (ResNeXt) trailed by 
FPN that gathers feature maps in various scales 
to create the features. The feature maps delivered 
by FPN are then utilized by the Region Proposal 
Decoder (RPN) to make predictions on the en-
tire image. Subsequently, the RoI-Alignt operator 
crops the global features in the global box predic-
tions to produce local features for detection. The 
local features are then processed by RCNN. As far 
as results, the feature ambiguity mitigate operator 
(FAMO) model was introduced to enhance the sys-
tem performance by moderating feature ambiguity 
in bone fracture detection. The results showed im-
provements in different metrics with FAMO. For 
example, the average precision increased by 0.6%. 
Also, FAMO led to enhancements in sensitivity, 
specificity, and AUC, with improvements ranging 
from 1.7% to 2.6%.

The framework described in [11] includes the 
assortment of a Femoral X-Ray Image Dataset and 
the improvement of an object detection strategy for 
classification types of fracture.. An object detection 
model is prepared to find fractures inside the images, 
accomplishing a mean Average Precision of 68.8 and 
71.5% accuracy. The framework structure in [12] in-
cludes the utilization of a Faster R-CNN based on 
CNN for fracture location on wrist radiographs. The 
study utilized an Inception-ResNet Faster R-CNN 
model for training and testing on a dataset of wrist 
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radiographs. The results showed that the model ac-
complished a high degree of accuracy in identifying 
fractures on both front-facing and lateral-facing, with 
sensitivity going from 91.2% to 98.1% and specific-
ity going from 72.9% to 86.4%.

CONVOLUTION NEURAL NETWORKS

CNN is considered one of the most important 
DL algorithms and is very similar to the multi-
layer perceptron network [13]. It is capable of 
evaluating images, identifying objects in them, 
as well as classifying them. It is also capable of 
performing tasks related to analysing pixel in-
formation [14]. The CNN performance changes 
depending on the layers used to build the model, 
their characteristics, and the way they are distrib-
uted, in addition to the parameters of each layer 
[15]. A CNN model can consist of a different set 
of layers, including the following:
1. Convolutional layers – this process involves 

applying a mathematical operation to two func-
tions, f and g, resulting in a modified function, 
denoted as o, which highlights the overlapping 
region between the original functions. In image 
processing, convolutional layers apply this pro-
cess on the input using a set of filters or con-
volution kernels. The convolution process is 
executed on each group of input elements with 
a specific filter size, generating individual val-
ues for feature maps. This operation is then re-
peated for each filter, producing a distinct set of 
feature maps. These convolutional layers play a 
crucial role in image classification by extracting 
relevant features from images, facilitating the 
recognition and classification of diverse visual 
patterns. Following the completion of the con-
volution process, an activation function is ap-
plied to the values within the feature maps [16].

2. Subsampling layers – the model’s architec-
ture allows for the addition of these optional 
layers, placed after each convolutional layer 
if present. These layers are utilized for reduc-
ing the number of neurons, as it will reduce 
each group of input neurons of a certain size 
to one neuron. The size of the group is deter-
mined dependence on the experimental results, 
but in a manner. In general, the smaller value 
of the group size, 2×2, is considered the best 
value because increasing the group size leads 
to a loss of information, and at the same time 
reducing the group size consumes a greater 

response time. Therefore, experimental results 
are relied upon to balance the model’s accuracy 
and the response time related to the group size 
[17]. The number of neurons within each group 
is reduced to one neuron in one of two ways:

 • max-pooling – it selects the highest weight 
value between all neurons of one group;

 • average-pooling – it selects the arithmetic aver-
age of the weights for the neurons of one group.

3. Fully connected layers – after building a layer or 
several layers of the previous two types, this type 
of layer connects all the neurons from the previ-
ous layer, regardless of their type, and makes them 
input to each neuron, as in regular neural networks 
such as Multilayers Perceptron. This type of layer 
is often added at the end of the layers, and usu-
ally two successive layers of this type are added 
as the last layers, as this layer cannot come before 
a convolution-type layer [18].

The key to success for CNNs is that each layer 
contains fewer parameters than the layer before it, 
so when the algorithm reaches the end it can learn 
as much information about the data as if this data 
were taken all at once [18]. Instead, gradual analysis 
of parts is followed. Smaller amount of data at each 
step. This allows the model to catch the complex 
and detailed relationships within the dataset with 
greater accuracy. This allows the model to learn by 
extracting finer features of images or videos.

METHODOLOGY

The proposed methodology is based on build-
ing an artificial neural network of the CNN type 
to detect bone fractures. Figure 1 represents the 
general structure of the proposed methodology.

Data collection

We used a dataset including 9103 X-ray im-
ages. The data set contains two classes – the first 
is Fractured class, and the second is Not Frac-
tured class.

Data pre-processing

This stage involves a set of image processing 
operations that are applied to the images within 
the dataset. Used in the context of image data aug-
mentation, these operations are used to artificially 
increase the diversity of the training data set by 



231

Advances in Science and Technology Research Journal 2024, 18(4), 228–237

that mimic real-world scenarios, making it more 
robust and better able to handle different shapes 
of input data during training.

Model design

In this research, a model was developed to de-
tect bone fractures using deep learning techniques. 
The Keras libraries in the Python programming 
language were relied upon to design the proposed 
model. The experimental approach was adopted to 
arrive at the structure of the proposed model. Fig-
ure 2 shows the structure of the proposed model. 
Figure 3 shows the detailed structure of the pro-
posed network This typically follows the typical 
architecture shown in Figure 3 for image classifi-
cation tasks using CNNs, with convolutional lay-
ers and pooling layers except for feature extrac-
tion, and then fully differentiating layers for clas-
sification. The forward-looking view with a single 
unit and sigmoid activation function suggests a 
binary classification, where the probability of be-
longing to one of the two categories is predicted.

Model evaluation

We employed K-fold cross-validation which 
is a resampling method utilized for assessing the 
model performance. This method divides the data 
set into k folds, the model is then trained on k-1 

applying different transformations to the images 
[19]. The goal is to improve the generalizability 
and robustness of the model. Below we explain 
the pre-processing operations we applied to the 
images:
 • rescale – this parameter scales the pixel val-

ues of images. It is common practice to res-
cale pixel values to a range between 0 and 1 
by dividing each pixel value by 255. This nor-
malization helps the neural network converge 
faster;

 • rotation – randomly rotates the image by a 
specific angle, in this case, up to 40 degrees;

 • width-shift and height-shift – randomly 
changes the width and height dimensions of 
the image by a small fraction of the total width 
or height, in this case, up to 20%;

 • shea – applies the shear transform with a max-
imum shear intensity of 20%;

 • zoom – randomly zooms the image by a factor 
of up to 20%;

 • horizontal-flip – randomly flips images 
horizontally;

 • fill-mode = nearest – this parameter defines 
the filling strategy for newly created pixels 
that may appear after rotation or transforma-
tion. “neares” means it will use the value of 
the nearest pixel to fill the empty space.

In general, these augmentation techniques aim 
to expose the model to a variety of transformations 

Figure 1. The general structure of 
the proposed methodology

Figure 2. The structure of the proposed model
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folds, and evaluated on the remaining fold [20]. 
Tthe confusion matrix (CM) which referred to 
an error matrix [21] is a table layout designed to 
represent the performance of a model, often one 
employed in supervised learning [22]. The archi-
tecture of the CM is illustrated in Figure 4. These 
parameters are used to calculate recall, precision 
and accuracy.
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Equation 1 represents for all classes which 
are positive, how many correctly predicted 
classes [23].
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Equation 2 represens from all predicted 
positive classes, how many are positive actually 
[24]. Precision should be as high as possible. The 

accuracy is defined as the percentage of correct 
predictions that a trained ML model achieves 
[25]. The accuracy is given in Eq. 3.
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The F1_Score serves as a metric that amal-
gamates precision and recall, offering a well-
rounded assessment of a model’s performance. 
The formula is as in Eq. 4.
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The Matthews correlation coefficient (MCC) 
is a measure of the quality of binary classifica-
tions, particularly when dealing with imbalanced 
data sets. It takes into account true positives, 
true negatives, false positives, and false nega-
tives [26]. The MCC can be calculated using the 
formula:

Figure 3. The detailed structure of the proposed network
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 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹  (1) 

 
 𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇  (2) 
 
 𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝑃𝑃𝑅𝑅𝑅𝑅𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹

𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹  (3) 
 
 𝐹𝐹1_𝑆𝑆𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅 = 2 × 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅  (4) 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑃𝑃 × 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝑃𝑃 × 𝐹𝐹𝑇𝑇
√(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃)(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑃𝑃)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)

 

 
(5) 

 (5)

The MCC ranges from -1 to 1, where 1 in-
dicates perfect prediction, 0 indicates random 
prediction, and -1 indicates total disagreement 
between prediction and observation [26].

RESULTS AND DISCUSSION

A learning curve is a graphical represen-
tation showing the advancement of a specific 
metric throughout the training stage of a ma-
chine learning model. These curves shows the 
time or progress on the x-axis and error or per-
formance on the y-axis. These graphs are in-
strumental in checking the improvement of a 
model during the learning stage, empowering 
the detection of issues and the enhancement of 
prediction performance. A prominent example 
of a learning curve is the plot of loss over time, 
where loss measures the model’s error, reflect-
ing its effectiveness. As the loss decreases, the 
model’s performance improves.

Another widely employed learning curve is 
the accuracy curve, which, like loss, gauges mod-
el performance. Higher values on these curves 
signify enhanced model capabilities. Training 
loss assesses the model’s fit to the training data, 
while validation loss evaluates its performance on 
new, unseen data. Two prevalent types of learning 

curves are optimization learning curves, derived 
from metrics optimizing the model’s parameters 
(e.g., loss), and performance learning curves, 
based on metrics used for model evaluation and 
selection (e.g., accuracy). Figure 5 shows the ac-
curacy and loss curves for both the training and 
validation processes.

We note that Figure 5 shows that our 
model has become smarter. Both training and 
validation metrics are on an upward trajec-
tory, meaning that the model learns from the 
data and does well on both familiar (training) 
and unfamiliar (validation) examples. Positive 
gradients of both loss and accuracy functions 
across epochs indicate successful convergence 
toward a minimum and improved generaliza-
tion, respectively. Both reduced validation loss 
and increased validation accuracy indicate that 
the model successfully transfers its knowledge 
from the training data to new instances. There-
fore, we avoid a common pitfall called “over-
fitting,” where the model becomes so good at 
simulating the training data that it has difficulty 
handling anything new. Overall, Figure 5 paints 
a positive picture: our model learns effectively 
and can handle unseen data, paving the way 
for reliable predictions. The training process is 
considered to have stopped at epoch 11, which 
achieved the highest accuracy of 95% for the 
training data and 98% for the validation data.

Now we will review the results achieved by 
applying the proposed model to the third set of 
data, which represents the test data, which is con-
sidered new data that is not visible to the model. 
Figure 6 shows the CM results.

The results of the CM indicate that the model 
correctly predicted 694 samples from the `Frac-
tured` class (0), and the model correctly predict-
ed 195 samples from `Not-Fractured` class (1). 
In addition, the model incorrectly predicted 54 
samples as being from class 0 while they were 
from class 1, it also incorrectly predicted 32 
samples as being from class 1 while they were 
from class 0. Table 1 shows the values of Preci-
sion, Recall, and F1-Score for each category.

We note from Table 1 that concerning bone 
fractured, for precision (0.93): The model is 
good at correctly identifying fractures when 
it predicts them. There’s a 93% chance that a 
positive prediction (fracture) by the model is 
actually a true fracture. For recall (0.96): The 
model captures a high percentage of actual 
fractures. It correctly identifies 96% of all the 

Figure 4. Confusion matrix, where: TP (true 
positive): is when the model makes correct positive 
prediction, TN (true negative) – is when the model 

makes correct negative prediction, FP (false 
positive) – when the model makes an incorrect 

positive prediction and FN (false negative) – when 
the model makes an incorrect negative prediction
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actual fractures present in the data. For F1-
Score (0.94): combining the above, the model 
performs well in both aspects for the “bone 
fractured” class. On the other hand, concern-
ing bone not-fractured, for precision (0.86): 
The model is moderately good at identifying 
non-fractures when it predicts them. There’s 
an 86% chance that a negative prediction (not-
fractured) by the model is a true non-fracture. 

For recall (0.78): The model misses a higher 
proportion of actual non-fractures compared 
to fractures. It only correctly identifies 78% 
of all actual non-fractures present in the data. 
For F1-score (0.82): Due to the lower recall, 
the overall performance for the “bone not-
fractured” class is slightly lower compared 
to the “bone fractured” class and the overall 
F1-score.

Figure 5. The accuracy and loss curves for both the training and validation processes

Figure 6. The CM results

Table 1. The values of precision, recall, and F1-Score for each category 
Category Precision Recall F1-Score MCC

Bone fractured 0.93 0.96 0.94
0.762

Bone not-fractured 0.86 0.78 0.82
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Overall, the model shows promising per-
formance in classifying bone fractures, partic-
ularly in terms of identifying actual fractures. 
However, there’s room for improvement in 
correctly classifying non-fractures. Based on 
the results shown in Table 1, we can reduce 
the overall performance of our model by cal-
culating the arithmetic average of precision, 
recall and F1-score and then calculating the 
overall accuracy of the system. The following 
is the model’s overall performance. Precision 
(0.895): this metric, at 0.895, indicates that out 
of all the cases the model predicted as positive 
(fractures), 89.5% were true fractures. In other 
words, for every 100 positive predictions, the 
model was right about 89.5 of them. Recall 
(0.87): this metric, at 0.87, signifies that the 
model captured 87% of the actual fractures 
present in the data. Conversely, it missed 13% 
of the actual fractures. F1-score (0.88): This 
metric, at 0.88, is the harmonic mean of pre-
cision and recall, providing a balanced view 
of the model’s performance. It considers both 
the ability to correctly predict positive cases 
(fractures) and avoid false positives (predict-
ing fractures when they’re absent). And accu-
racy (0.91): this metric, at 0.91, represents the 
proportion of all predictions (both positive and 
negative) that the model got right. In this case, 
the model correctly classified 91% of the cas-
es. A Matthews correlation coefficient of 0.762 
suggests that our model has a strong ability to 
correctly classify instances into their respec-
tive categories (fracture vs. non-fracture). This 
indicates that our model’s predictions are in 
strong agreement with the actual labels.

The model demonstrates moderately good 
overall performance in classifying bone frac-
tures. It achieves a good balance between 

precision and recall, as reflected by the F1-
score close to 0.9. Additionally, the high ac-
curacy of 0.91 suggests the model makes rela-
tively few errors in both positive and negative 
predictions. By comparing the performance of 
the proposed model with a group of previous 
studies on the same topic, the results are shown 
in Table 2. 

CONCLUSIONS

In the realm of medical imaging, the accu-
rate and swift identification of bone fractures 
plays a pivotal role in facilitating timely and 
effective patient care. This research addresses 
this critical need by harnessing the power of 
deep learning, specifically employing a con-
volutional neural network (CNN) model as the 
cornerstone of our methodology. In this work, 
we proposed a new deep-learning method for 
bone fracture detection in X-rays. The experi-
ment results show that the proposed method 
could achieve average precision of 89.5%, av-
erage recall of 87%, average F1_score of 88% 
and accuracy of 91% on bone fracture detec-
tion and it remarkably outperforms other state-
of-the-art deep learning methods. If minimiz-
ing false positives is crucial (to avoid unnec-
essary interventions), exploring techniques to 
improve the model’s ability to correctly clas-
sify non-fractures might be beneficial. Future 
research could delve into comparative analysis 
with the referenced techniques, ensuring con-
sistent metrics and experimental setups for a 
fair evaluation. This would provide a clear-
er picture of the proposed model’s relative 
strengths and weaknesses compared to exist-
ing approaches.

Table 2. Performance comparison of the proposed model with a group of previous studies
Reference Technique Performance

[6] DCFPN AP = 82.1%

[7] Improved R-CNN AP = 62.04%

[8] ParallelNet AP = 87.8%

[9] Faster R-CNN & CrackNet Precision = 89.09%, Recall = 87.5%, Accuracy = 88.39%

[11] Deep Learning AP = 68.8%, Accuracy = 71.5%

Proposed model CNN AP = 89.5%, Recall = 87%, Accuracy = 91%, MCC=0.762
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