Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The regional ecological environment has become a significant subject of study due to the dynamics of the ecosystem, which is represented by vegetation, under the influence of human activities. The objective of this research is to demonstrate the implementation and effectiveness of the forest canopy density (FCD) model in generating a map that illustrates changes in forest canopy density using multitemporal remote sensing data in Tabunio watershed. The methodology relies on vegetation index, including the normalized difference vegetation index (NDVI), shadow index (SI), and bare soil index (BI), to generate a composite vegetation index (CVI). FCD uses multitemporal remote sensing data from Landsat TM images from 2005 to 2020, which have been utilized to accomplish multisource categorization. The findings indicated that the vegetation coverage of the Tabunio watershed presented a predominant pattern of high coverage in the northeastern and eastern regions, whereas most areas of the western region had low coverage; (2) vegetation cover from 2005 to 2020 is dominated by sparse to very dense vegetation cover classes; (3) changes in vegetation cover over two decades are very significant. The expansion of plantation land in 2005 caused a lot of non-vegetated land, which gradually changed in the following year period along with plant growth. At the end of 2020, the percentage of very dense vegetation became increasingly dominant, which was around 42 percent. The results of the study indicate the three biophysical index (NDVI, SI, and BI) used in this model approach were appropriate for precisely discriminating across all canopy density classes, as seen by the overall producer’s accuracy of 81.3%. FCD model in multitemporal data can helps in the early identification of deforestation or forest degradation activities. Furthermore, the FCD model may have certain constraints, as it requires an understanding of ground conditions to establish threshold values for each class.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
369--378
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
- Physics Study Program, Mathematics and Natural Sciences Faculty, Universitas Lambung Mangkurat. Jl. Ahmad Yani Km. 36 Banjarbaru, Kalimantan Selatan, Indonesia
autor
- Physics Study Program, Mathematics and Natural Sciences Faculty, Universitas Lambung Mangkurat. Jl. Ahmad Yani Km. 36 Banjarbaru, Kalimantan Selatan, Indonesia
autor
- Physics Study Program, Mathematics and Natural Sciences Faculty, Universitas Lambung Mangkurat. Jl. Ahmad Yani Km. 36 Banjarbaru, Kalimantan Selatan, Indonesia
Bibliografia
- 1. Amiri, R., Weng, Q., Alimohammadi, A., Alavipanah, S.K. 2009. Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sensing of Environment, 113(12), 2606–2617. https://doi.org/10.1016/j.rse.2009.07.021
- 2. Aires, U.R.V., da Silva, D.D., Moreira, M.C., Ribeiro, C.A.A.S., Ribeiro, C.B. de M. 2020. The Use of the Normalized Difference Vegetation Index to Analyze the Influence of Vegetation Cover Changes on the Streamflow in the Manhuaçu River Basin, Brazil. Water Resources Management, 34(6), 1933– 1949. https://doi.org/10.1007/s11269-020-02536-1
- 3. Auliana, A., Ridwan, I., Nurlina, N. 2018. Analisis Tingkat Kekritisan Lahan di DAS Tabunio Kabupaten Tanah Laut. Positron, 7(2), 54. https://doi.org/10.26418/positron.v7i2.18671
- 4. Baloloy, A.B., Blanco, A.C., Raymund Rhommel, R.R.C., Nadaoka, K. 2020. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 166(January), 95–117. https://doi.org/10.1016/j.isprsjprs.2020.06.001
- 5. Ben Abbes, A., Bounouh, O., Farah, I.R., de Jong, R., Martínez, B. 2018. Comparative study of three satellite image time-series decomposition methods for vegetation change detection. European Journal of Remote Sensing, 51(1), 607–615. https://doi.org/10.1080/22797254.2018.1465360
- 6. Carbajal-Morán, H., Márquez-Camarena, J.F., Galván-Maldonado, C.A., Zárate-Quiñones, R.H., Galván-Maldonado, A.C., Muñoz-De la Torre, R.J. 2023. Evaluation of Normalized Difference Vegetation Index by Remote Sensing with Landsat Satellites in the Tayacaja Valley in the Central Andes of Peru. Ecological Engineering and Environmental Technology, 24(7), 208–215. https://doi.org/10.12912/27197050/169530
- 7. Clevers, J.G.P. W., Kooistra, L., van den Brande, M.M.M. 2017. Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sensing, 9(5), 1–15. https://doi.org/10.3390/rs9050405
- 8. Durigon, V.L., Carvalho, D.F., Antunes, M.A.H., Oliveira, P.T.S., Fernandes, M.M. 2014. NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. International Journal of Remote Sensing, 35(2), 441–453. https://doi.org /10.1080/01431161.2013.871081
- 9. Ejegu, M.A., Reta, K.G., Yegizaw, E.S., Biru, B.Z., Mekonnen, D.M., Wassie, G.K., Tegegne, M.A., Dirar, T.M., Dubale, Y.G. 2022. Land management, dynamics and vegetation vulnerability analysis in the Guna-Tana watershed as a predictor of land degradation, using remote sensing data. Journal of Degraded and Mining Lands Management, 9(4), 3703. https://doi.org/10.15243/jdmlm.2022.094.3703
- 10. Fahmi, S., Somantri, L., Ridwana, R. 2023. Pemanfaatan Citra Sentinel-2a Multi Temporal Untuk Monitoring Perubahan Kanopi Hutan Kecamatan Belinyu Kabupaten Bangka Menggunakan Analisis Forest Canopy Density. Jurnal Hutan Tropis, 11(3), 380. https://doi.org/10.20527/jht.v11i3.17633
- 11. Fang, H., Li, S., Zhang, Y., Wei, S., Wang, Y. 2021. New insights of global vegetation structural properties through an analysis of canopy clumping index, fractional vegetation cover, and leaf area index. Science of Remote Sensing, 4(May), 100027. https://doi.org/10.1016/j.srs.2021.100027
- 12. Gandhi, G.M., Parthiban, S., Thummalu, N., Christy, A. 2015. Ndvi: Vegetation Change Detection Using Remote Sensing and Gis - A Case Study of Vellore District. Procedia Computer Science, 57, 1199– 1210. https://doi.org/10.1016/j.procs.2015.07.415
- 13. Gao, L., Wang, X., Johnson, B.A., Tian, Q., Wang, Y., Verrelst, J., Mu, X., Gu, X. 2020. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 159(November 2019), 364–377. https://doi.org/10.1016/j.isprsjprs.2019.11.018
- 14. Gupta, K., Mukhopadhyay, A., Giri, S., Chanda, A., Datta Majumdar, S., Samanta, S., Mitra, D., Samal, R.N., Pattnaik, A.K., Hazra, S. 2018. An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX, 5, 1129–1139. https://doi.org/10.1016/j.mex.2018.09.011
- 15. Ghosh, S.M., Behera, M.D., Jagadish, B., Das, A.K., Mishra, D.R. 2021. A novel approach for estimation of aboveground biomass of a carbon-rich mangrove site in India. Journal of Environmental Management, 292. https://doi.org/10.1016/j.jenvman.2021.112816
- 16. Godinho, S., Gil, A., Guiomar, N., Neves, N., PintoCorreia, T. 2016. A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal. Agroforestry Systems, 90(1), 23–34. https://doi.org/10.1007/s10457-014-9769-3
- 17. Guha, S., Govil, H. 2021. An assessment on the relationship between land surface temperature and normalized difference vegetation index. Environment, Development and Sustainability, 23(2), 1944–1963. https://doi.org/10.1007/s10668-020-00657-6
- 18. Guo, J., Wang, K., Wang, T., Bai, N., Zhang, H., Cao, Y., Liu, H. 2022. Spatiotemporal Variation of Vegetation NDVI and Its Climatic Driving Forces in Global Land Surface. Polish Journal of Environmental Studies, 31(4), 3541–3549. https://doi.org/10.15244/pjoes/147194
- 19. Huang, S., Tang, L., Hupy, J.P., Wang, Y., Shao, G. 2021. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1), 1–6. https://doi.org/10.1007/s11676-020-01155-1
- 20. Hussain, N., Islam, M.N. 2020. Hot spot (Gi∗) model for forest vulnerability assessment: a remote sensing-based geo-statistical investigation of the Sundarbans mangrove forest, Bangladesh. Modeling Earth Systems and Environment, 6(4), 2141–2151. https://doi.org/10.1007/s40808-020-00828-4
- 21. Huylenbroeck, L., Laslier, M., Dufour, S., Georges, B., Lejeune, P., Michez, A. 2020. Using remote sensing to characterize riparian vegetation: A review of available tools and perspectives for managers. Journal of Environmental Management, 267(December 2019), 110652. https://doi.org/10.1016/j.jenvman.2020.110652
- 22. Jia, M., Wang, Z., Wang, C., Mao, D., Zhang, Y. 2019. A new vegetation index to detect periodically submerged mangrove forest using single-tide Sentinel-2 imagery. Remote Sensing, 11(17), 1–17. https://doi.org/10.3390/rs11172043
- 23. Kadir, S., Badaruddin, Nurlina, Ridwan, I., Rianawaty, F. 2016. The recovery of tabunio watershed through enrichment planting using ecologically and economically valuable species in south Kalimantan, Indonesia. Biodiversitas, 17(1), 140–147. https://doi.org/10.13057/biodiv/d170121
- 24. Li, F., Chen, W., Zeng, Y., Zhao, Q., Wu, B. 2014. Improving estimates of grassland fractional vegetation cover based on a pixel dichotomy model: A case study in Inner Mongolia, China. Remote Sensing, 6(6), 4705–4722. https://doi.org/10.3390/rs6064705
- 25. Li, M., Zang, S., Zhang, B., Li, S., Wu, C. 2014. A review of remote sensing image classification techniques: The role of Spatio-contextual information. European Journal of Remote Sensing, 47(1), 389–411. https://doi.org/10.5721/EuJRS20144723
- 26. Loi, D.T., Chou, T.-Y., Fang, Y.-M. 2017. Integration of GIS and Remote Sensing for Evaluating Forest Canopy Density Index in Thai Nguyen Province, Vietnam. International Journal of Environmental Science and Development, 8(8), 539–542. https://doi.org/10.18178/ijesd.2017.8.8.1012
- 27. Long, X., Li, X., Lin, H., Zhang, M. 2021. Mapping the vegetation distribution and dynamics of a wetland using adaptive-stacking and Google Earth Engine based on multi-source remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 102, 102453. https://doi.org/10.1016/j.jag.2021.102453
- 28. Mazzarino, M., Finn, J.T. 2016. An NDVI analysis of vegetation trends in an Andean watershed. Wetlands Ecology and Management, 24(6), 623–640. https://doi.org/10.1007/s11273-016-9492-0
- 29. Ministry of Forestry Directorate of Watershed Management and Social Forestry. Barito River Watershed Management Center. 2013. Report on the Preparation of Baseline Data of Tabunio Watershed Management Ds. Banjarbaru.
- 30. Mu, X., Song, W., Gao, Z., McVicar, T.R., Donohue, R.J., Yan, G. 2018. Fractional vegetation cover estimation by using multi-angle vegetation index. Remote Sensing of Environment, 216(June), 44–56. https://doi.org/10.1016/j.rse.2018.06.022
- 31. Nugraha, A.S.A., Citra, I.P.A. 2020. Modifikasi Model Forest Canopy Density ( Fcd ) Pada Citra Landsat 8 Multitemporal Untuk Monitoring Perubahan Tutupan Vegetasi Di Kecamatan Sukasada-Bali. Jurnal Penginderaan Jauh, 17(2), 149–159. https://doi.org/http://dx.doi.org/10.30536/j.pjpdcd.2020.v17.a3380
- 32. Nurlina, Kadir, S., Kurnain, A., Ilham, W., Kalimantan, S., Kalimantan, S., Kalimantan, S., Program, P.S. 2021. Comparison of Maximum Likelihood and Support Vector Machine Classifiers For Land Use/ Land Cover Mapping Using Multitemporal Imagery. 12(June), 126–139. http://www.savap.org.pk/journals/ARInt./Vol.12(1)/ARInt.2021(12.1-12).pdf
- 33. Nurlina, Kadir, S., Kurnain, A., Ilham, W., Ridwan, I. 2022. Analysis of soil erosion and its relationships with land use/cover in Tabunio watershed. IOP Conference Series: Earth and Environmental Science, 976(1), 012027. https://doi.org/10.1088/1755-1315/976/1/012027
- 34. Nurlina, N., Kadir, S., Kurnain, A., Ilham, W., Ridwan, I. 2023. Impact of Land Cover Changing on Wetland Surface Temperature Based on Multitemporal Remote Sensing Data. Polish Journal of Environmental Studies, 32(3), 2281–2291. https://doi.org/10.15244/pjoes/157495
- 35. Ouyang, W., Hao, F., Skidmore, A.K., Toxopeus, A.G. 2010. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River. Science of the Total Environment, 409(2), 396–403. https://doi.org/10.1016/j.scitotenv.2010.10.020
- 36. Richards, D.R., Belcher, R.N. 2020. Global changes in urban vegetation cover. Remote Sensing, 12(1). https://doi.org/10.3390/RS12010023
- 37. Ridwan, I., Kadir, S., Nurlina, N. 2024. Wetland degradation monitoring using multi-temporal remote sensing data and watershed land degradation index. Global Journal of Environmental Science and Management, 10(1), 83–96. https://doi.org/10.22034/gjesm.2024.01.07
- 38. Samanta, S., Hazra, S., Mondal, P.P., Chanda, A., Giri, S., French, J.R., Nicholls, R.J. 2021. Assessment and attribution of mangrove forest changes in the indian sundarbans from 2000 to 2020. Remote Sensing, 13(24). https://doi.org/10.3390/rs13244957
- 39. Sahana, M., Sajjad, H., Ahmed, R. 2015. Assessing spatio-temporal health of forest cover using forest canopy density model and forest fragmentation approach in Sundarban reserve forest, India. Modeling Earth Systems and Environment, 1(4), 1–10. https://doi.org/10.1007/s40808-015-0043-0
- 40. Song, W., Mu, X., Ruan, G., Gao, Z., Li, L., Yan, G. 2017. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. International Journal of Applied Earth Observation and Geoinformation, 58, 168–176. https://doi.org/10.1016/j.jag.2017.01.015
- 41. Song, Y., Jin, L., Wang, H. 2018. Vegetation changes along the Qinghai-Tibet Plateau Engineering Corridor since 2000 induced by climate change and human activities. Remote Sensing, 10(1), 1–21. https://doi.org/10.3390/rs10010095
- 42. Sun, H., Wang, J., Xiong, J., Bian, J., Jin, H., Cheng, W., Li, A. 2021. Vegetation Change and Its Response to Climate Change in Yunnan Province, China. Advances in Meteorology, 2021. https://doi.org/10.1155/2021/8857589
- 43. Tian, J., Yue, J., Philpot, W.D., Dong, X., Tian, Q. 2021. Soil moisture content estimate with drying process segmentation using shortwave infrared bands. Remote Sensing of Environment, 263(June), 112552. https://doi.org/10.1016/j.rse.2021.112552
- 44. Vaghela, B.N., Parmar, M.G., Solanki, H.A., Kansara, B.B., Prajapati, S.K., Kalubarme Editors Cem Gazioğlu, M.H., Zafer Şeker, D., Tanık, A., Kaya, Ş., Volkan Demir, A., Aksu, A., Alpar, B., Altuğ, G., Balas, L., Balas, C., Bat, L., Bayram, B., Çağlar, N., Dash, J., Kalubarme, M.H. 2018. Multi Criteria Decision Making (MCDM) Approach for Mangrove Health Assessment using Geo-informatics Technology. International Journal of Environment and Geoinformatics, 5(2), 114–131. https://doi.org/10.30897/ijegeo
- 45. Wibawa, D.T., Fithria, A., Nisa, K. 2021. Perubahan Penutupan Lahan Di Das Tabunio, Kabupaten Tanah Laut, Kalimantan Selatan. Jurnal Sylva Scienteae, 4(1), 59. https://doi.org/10.20527/jss.v4i1.3093
- 46. Yan, K., Gao, S., Chi, H., Qi, J., Song, W., Tong, Y., Mu, X., Yan, G. 2022. Evaluation of the VegetationIndex-Based Dimidiate Pixel Model for Fractional Vegetation Cover Estimation. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14. https://doi.org/10.1109/TGRS.2020.3048493
- 47. Zaitunah, A., Samsuri, S., Ahmad, A.G., Safitri, R.A. 2018. Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia. IOP Conference Series: Earth and Environmental Science, 126(1). https://doi.org/10.1088/1755-1315/126/1/012112
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ab1a1c0-a350-4d24-a58c-be3a711a05e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.