Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the presented study, a PGS prepolymer (pPGS) was synthesized utilizing polycondensation technique (equimolar sebacic acid:glycerol ratio, 130 °C, 24 h). Subsequently, the pPGS was thermally cross-linked in vacuum oven in 130 °C for 84 and 168 h. The cylindrical and dumbbell-shaped samples were subjected for physico-chemical and thorough mechanical analysis including tensile and compressive strength evaluation as well as dynamic mechanical thermal analysis (DMTA). The study allowed for the investigation of alteration of PGS properties during cross-linking and decay of elastomeric properties over prolonged cross-linking time. Moreover, a deconvolution in FTIR analysis allowed to glimpse into the hydrogen bonding structure of the materials which weakens during the cross-linking. The obtained results can be utilized during designing PGS-based bulk materials for biomedical application where bearing mechanical loads and tuned chemical character is of vital importance.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
85--93
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wrocław, Poland.
autor
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wrocław, Poland.
autor
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wrocław, Poland.
Bibliografia
- [1] AGHAJAN M.H., PANAHI-SARMAD M., ALIKARAMI N., SHOJAEI S., SAEIDI A., KHONAKDAR H.A. et al., Using solventfree approach for preparing innovative biopolymer nanocomposites based on PGS/gelatin, Eur. Polym. J., 2020, 131, 109720.
- [2] AYDIN H.M., SALIMI K., RZAYEV Z.M.O., PIŞKIN E., Microwave-assisted rapid synthesis of poly(glycerol-sebacate) elastomers, Biomater. Sci., 2013, 1, 5, 503–509.
- [3] CALVO-CORREAS T., GABILONDO N., ALONSO-VARONA A., PALOMARES T., CORCUERA M.A., ECEIZA A., Shape-memory properties of crosslinked biobased polyurethanes, Eur. Polym. J., 2016, 78, 253–263.
- [4] CHEN Q.Z., BISMARCK A., HANSEN U., JUNAID S., TRAN M.Q., HARDING S.E. et al., Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue, Biomaterials, 2008, 29, 1, 47–57.
- [5] DENIZ P., GULER S., ÇELIK E., HOSSEINIAN P., AYDIN H.M., Use of cyclic strain bioreactor for the upregulation of key tenocyte gene expression on poly(glycerol-sebacate) (PGS) sheets, Mater Sci. Eng. C., 2020, 106, 110293.
- [6] FAKHRI V., JAFARI A., SHAFIEI M.A., EHTESHAMFAR M.V., KHALIGHIYAN S., HOSSEINI H. et al., Development of physical, mechanical, antibacterial and cell growth properties of poly(glycerol sebacate urethane) (PGSU) with helping of curcumin and hydroxyapatite nanoparticles, Polym. Chem., 2021, 12, 43, 6263–6282.
- [7] FRYDRYCH M., CHEN B., Fabrication, structure and properties of three-dimensional biodegradable poly(glycerol sebacate urethane) scaffolds, Polymer, 2017, 122, 159–168.
- [8] GADOMSKA-GAJADHUR A., WRZECIONEK M., MATYSZCZAK G., PIĘTOWSKI P., WIĘCŁAW M., RUŚKOWSKI P., Optimization of poly(glycerol sebacate) Synthesis for Biomedical Purposes with the Design of Experiments, Org. Process Res. Dev., 2018, 22, 12, 1793–1800.
- [9] GUILAK F., RATCLIFFE A., MOW V.C., Chondrocyte deformation and local tissue strain in articular cartilage: A confocal microscopy study, J. Orthop. Res., 1996, 13, 3, 410–421.
- [10] GUO X.L., LU X.L., DONG D.L., SUN Z.J., Characterization and optimization of glycerol/sebacate ratio in poly(glycerolsebacate) elastomer for cell culture application, J. Biomed. Mater Res. A., 2014, 102, 11, 3903–3907.
- [11] HU J., KAI D., YE H., TIAN L., DING X., RAMAKRISHNA S. et al., Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering, Mater Sci. Eng. C., 2017, 70, 1089–1094.
- [12] JENA K.K., RAJU K.V.S.N., PRATHAB B., AMINABHAVI T.M., Hyperbranched polyesters: Synthesis, characterization, and molecular simulations, J. Phys. Chem. B., 2007, 111, 30, 8801–8811.
- [13] JIA Y., WANG W., ZHOU X., NIE W., CHEN L., HE C., Synthesis and characterization of poly(glycerol sebacate)-based elastomeric copolyesters for tissue engineering applications, Polym. Chem., 2016, 7, 14, 2553–2564.
- [14] KERATIVITAYANAN P., GAHARWAR A.K., Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates, Acta Biomater., 2015, 26, 34–44.
- [15] KOONS G.L., DIBA M., MIKOS A.G., Materials design for bonetissue engineering, Nat. Rev. Mater, 2020, 5, 8, 584–603.
- [16] LIANG B., SHI Q., XU J., CHAI Y.M., XU J.-G, Poly (Glycerol Sebacate)-Based Bio-Artificial Multiporous Matrix for Bone Regeneration, Front. Chem., 2020, 8, 1097.
- [17] LIN D., CAI B., WANG L., CAI L., WANG Z., XIE J. et al., A viscoelastic PEGylated poly(glycerol sebacate)-based bilayer scaffold for cartilage regeneration in full-thickness osteochondral defect, Biomaterials, 2020, 253, 120095.
- [18] LIU Q., TIAN M., DING T., SHI R., FENG Y., ZHANG L. et al., Preparation and characterization of a thermoplastic poly(glicerol sebacate) elastomer by two-step method, J. Appl. Polym. Sci., 2007, 103, 3, 1412–1419.
- [19] LI Y., HUANG W., COOK W.D., CHEN Q., A comparative study on poly(xylitol sebacate) and poly(glycerol sebacate): Mechanical properties, biodegradation and cytocompatibility, Biomed. Mater, 2013, 8, 3.
- [20] LOH X.J., ABDUL KARIM A., OWH C., Poly(glycerol sebacate) biomaterial: synthesis and biomedical applications, J. Mater Chem. B., 2015, 3, 39, 7641–7652.
- [21] MANZANEDO D., ALLEN S.M., Biorubber (PGS): evaluation of a novel biodegradable elastomer, 2006, Available at: https://dspace.mit.edu/handle/1721.1/37687 [Accessed: November 23, 2022].
- [22] MARTÍN-CABEZUELO R., RODRÍGUEZ-HERNÁNDEZ J.C., VILARIÑO-FELTRER G., VALLÉS-LLUCH A., Role of curing temperature of poly(glycerol sebacate) substrates on proteincell interaction and early cell adhesion, Polymers (Basel), 2021, 13, 3, 1–14.
- [23] MA Y., ZHANG W., WANG Z., WANG Z., XI Q., NIU H. et al., PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity, Acta Biomater., 2016, 44, 110–124.
- [24] MATYSZCZAK G., WRZECIONEK M., GADOMSKA-GAJADHUR A., RUŚKOWSKI P., Kinetics of Polycondensation of Sebacic Acid with Glycerol, Org. Process Res. Dev., 2020, 24, 6, 1104–1111.
- [25] MONEM M., AHMADI Z., FAKHRI V., GOODARZI V., Preparing and characterization of poly(glycerol-sebacic acid-urethane) (PGSU) nanocomposites: clearing role of unmodified and modified clay nanoparticles, J. Polym. Res., 2022, 29, 25.
- [26] NIJST C.L.E., BRUGGEMAN J.P., KARP J.M., FERREIRA L., ZUMBUEHL A., BETTINGER C.J. et al., Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate), Biomacromolecules, 2007, 8, 10, 3067–3073.
- [27] ORLOVSKII V.P., KOMLEV V.S., BARINOV S.M., Hydroxyapatite and hydroxyapatite-based ceramics, Inorg. Mater., 2002 38, 10, 973–984.
- [28] PERIN G.B., FELISBERTI M.I., Enzymatic Synthesis of Poly(glicerol sebacate): Kinetics, Chain Growth, and Branching Behavior, Macromolecules, 2020, 53, 18, 7925–7935.
- [29] PISZKO P., KRYSZAK B., PISZKO A., SZUSTAKIEWICZ K., Brief review on poly(glycerol sebacate) as an emerging poliester in biomedical application: Structure, properties and modifications, Polim. Med., 2021, 51, 1, 43–50.
- [30] PISZKO P., WŁODARCZYK M., ZIELIŃSKA S., GAZIŃSKA M., PŁOCIŃSKI P., RUDNICKA K. et al., PGS/HAp Microporous Composite Scaffold Obtained in the TIPS-TCL-SL Method: An Innovation for Bone Tissue Engineering, Int. J. Mol. Sci., 2021, 22, 16, 8587.
- [31] POMERANTSEVA I., KREBS N., HART A., NEVILLE C.M., HUANG A.Y., SUNDBACK C.A., Degradation behavior of poly(glicerol sebacate), J. Biomed. Mater Res. A., 2009, 91, 4, 1038–1047.
- [32] RAI R., TALLAWI M., BARBANI N., FRATI C., MADEDDU D., CAVALLI S. et al., Biomimetic poly(glycerol sebacate) (PGS) membranes for cardiac patch application, Mater Sci. Eng. C., 2013, 33, 7, 3677–3687.
- [33] RAI R., TALLAWI M., GRIGORE A., BOCCACCINI A.R., Synthesis, properties and biomedical applications of poly(glicerol sebacate) (PGS): A review, Prog. Polym. Sci., 2012, 37, 8, 1051–1078.
- [34] ROSTAMIAN M., KALAEE M.R., DEHKORDI S.R., PANAHI-SARMAD M., TIRGAR M., GOODARZI V., Design and characterization of poly(glycerol-sebacate)-co-poly(caprolactone) (PGS-co-PCL) and its nanocomposites as novel biomaterials: The promising candidate for soft tissue engineering, Eur. Polym. J., 2020, 138, 109985.
- [35] SAUDI A., RAFIENIA M., ZARGAR KHARAZI A., SALEHI H., ZARRABI A., KAREVAN M., Design and fabrication of poly (glycerol sebacate)-based fibers for neural tissue engineering: Synthesis, electrospinning, and characterization, Polym. Adv. Technol., 2019, 30, 6, 1427–1440.
- [36] SENCADAS V., SADAT S., SILVA D.M., Mechanical performance of elastomeric PGS scaffolds under dynamic conditions, J. Mech. Behav. Biomed. Mater, 2020, 102, 103474.
- [37] SINGH D., HARDING A.J., ALBADAWI E., BOISSONADE F.M., HAYCOCK J.W., CLAEYSSENS F., Additive manufactured biodegradable poly(glycerol sebacate methacrylate) nerve guidance conduits, Acta Biomater., 2018, 78, 48–63.
- [38] SPERLING L.H., Introduction to Physical Polymer Science, Fourth Ed., 2005.
- [39] SUN L., MA Y., NIU H., LIU Y., YUAN Y., LIU C. et al., Recapitulation of In Situ Endochondral Ossification Using an Injectable Hypoxia-Mimetic Hydrogel, Adv. Funct. Mater, 2021, 31, 5, 2008515.
- [40] SUN Z.J., CHEN C., SUN M.Z., AI C.H., LU X.L., ZHENG Y.F. et al., The application of poly (glycerol–sebacate) as biodegradable drug carrier, Biomaterials, 2009, 30, 28, 5209–5214.
- [41] THEERATHANAGORN T., THAVORNYUTIKARN B., JANVIKUL W., Preparation and characterization of plasma-treated porous poly(glycerol sebacate) scaffolds, Adv. Mat. Res., 2013, 747, 182–185.
- [42] WANG Y., AMEER G.A., SHEPPARD B.J., LANGER R., A tough biodegradable elastomer, Nat. Biotechnol., 2002, 20, 6, 602–606.
- [43] WANG Z., MA Y., WANG Y.X., LIU Y., CHEN K., WU Z. et al., Urethane-based low-temperature curing, highly-customized and multifunctional poly(glycerol sebacate)-co-poly(ethylene glycol) copolymers, Acta Biomater., 2018, 71, 279–292.
- [44] WU Z., JIN K., WANG L., FAN Y., Effect of curing time on the mechanical properties of poly(glycerol sebacate), J. Appl. Polym. Sci., 2023, 140, 14.
- [45] XIAO B., YANG W., LEI D., HUANG J., YIN Y., ZHU Y. et al., PGS Scaffolds Promote the In Vivo Survival and Directional Differentiation of Bone Marrow Mesenchymal Stem Cells Restoring the Morphology and Function of Wounded Rat Uterus, Adv. Healthc. Mater, 2019, 8, 5, 1801455
- [46] YANG K., ZHANG J., MA X., MA Y., KAN C., MA H. et al., β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering, Mater. Sci. Eng. C., 2015, 56, 37–47.
- [47] ZAKY S.H., LEE K.W., GAO J., JENSEN A., VERDELIS K., WANG Y. et al., Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone, Acta Biomater., 2017, 54, 95–106.
- [48] ZHANG P., HONG Z., YU T., CHEN X., JING X., In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(l-lactide), Biomaterials, 2009, 30, 1, 58–70.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6aaf4765-0fab-4d10-a805-a1dc3c1c584b