Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work formulated relevance, set out an analytical review of existing approaches to the research recurrent neural networks (RNN) and defined precondition appearance a new direction in the field neuroinformatics – reservoir computing. Shows generalized classification neural network (NN) and briefly described main types dynamics and modes RNN. Described topology, structure and features of the model NN with different nonlinear functions and with possible areas of progress. Characterized and systematized wellknown learning methods RNN and conducted their classification by categories. Determined the place RNN with unsteady dynamics of other classes RNN. Deals with the main parameters and terminology, which used to describe models RNN. Briefly described practical implementation recurrent neural networks in different areas natural sciences and humanities, and outlines and systematized main deficiencies and the advantages of using different RNN. The systematization of known recurrent neural networks and methods of their study is performed and on this basis the generalized classification of neural networks was proposed.
Czasopismo
Rocznik
Tom
Strony
63--68
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Lviv Polytechnic National University
autor
- Lviv Polytechnic National University
Bibliografia
- 1. Benderskaia E.N., Zhukova S.V. 2011. Neural network with chaotic dynamics in problems of cluster analysis, № 7, Рp. 74–86. (in Russian)
- 2. Benderskaya E.N., Zhukova S.V. 2013. Multidisciplinary Trends in Modern Artificial Intelligence: Turing’s Way // AIECM – Turing, Book Chapters: Artificial Intelligence, Evolutionary Computation and Metaheuristics, Springer, Рp. 320–343.
- 3. Coombes S. 2005. Waves, bumps, and patterns inneural field theories // Biological Cybernetics, Vol. 93, № 2, Рp. 91–108.
- 4. Dasgupta B., Siegelmann H., Sontag E.D. 1995. On the Complexity of Training Neural Networks with Continuous Activation Functions // IEEE Transactions on Neural Networks, 1995, Vol. 6, № 6, Рp. 1490–1504.
- 5. Dominey P.F. 1995. Complex sensory-motor sequence learning based on recurrent state representation and reinforcement learning // Biological Cybernetics, Vol. 73, № 3, Рp. 265–274.
- 6. Dunin-Barkowski W.L., Osovets N.B. 1995. HebbHopfield neural networks based on onedimensional sets of neuron states // Neural Processing Letters, Vol. 2, № 5, Рp. 28–31.
- 7. Feng J., Brown D. 1998. Fixed-point attractor analysis for a class of neurodynamics // Neural Computation, Vol. 10, Рp. 189–213.
- 8. Kaneko K. 2006. Life: an introduction to complex systems biology, Berlin: Springer-Verlag, p.369.
- 9. Maass W., Natschlдger T., Markram H. 2002. Real-time computing without stable states: a new framework for neural computations based on perturbations // Neural Computation, Vol. 11, Рp.2531–2560.
- 10. Schrauwen B., Verstraeten D., Campenhout J.V. 2007. An overview of reservoir computing theory, applications and implementations // Proc. of the 15th European Symp. on Artificial Neural Networks, Рp. 471–482.
- 11. Fedasyuk D., Yakovyna V., Serdyuk P., Nytrebych O. 2014. Variables state-based software usage model // Econtechmod : an international quarterly journal on economics in technology, new technologies and modelling processes, Lublin ; Rzeszow, Volum 3, number 2, Рp. 15-20.
- 12. Benderskaia E.N., Nikitin K.V. 2011. Modeling of neural activity in the brain, № 6-2(138), Рp. 34–40. (in Russian)
- 13. Rybytska O., Vovk M. 2014. An application of the fuzzy set theory and fuzzy logic to the problem of predicting the value of goods rests // Econtechmod : an international quarterly journal on economics in technology, new technologies and modeling processes, Lublin ; Rzeszow, Volum 3, №2, Рp. 65-69.
- 14. Benderskaia E.N. 2012. An opportunity to demonstrate some characteristics of the synchronization to identify self-organizing clusters in neural networks with chaotic dynamics, Рp. 69–73 (in Russian)
- 15. Magnitskii N.A., Sidorov S.V. 2004. New methods of chaotic dynamics, Moscow, p. 320 (in Russian)
- 16. Malinetskii G.G., Potapov A.B. 2006. Nonlinear dynamics in problems of cluster analysis, Moscow: KomKniga, p.240 (in Russian)
- 17. Piterson W., Weldon E. 1976. Error-correcting codes. Moscow: Мir publ., p.593 (in Russian)
- 18. Tiukin I.Iu., Terekhov V.A. 2008. Eshbі Vіlyam. 2006. Introduction to cybernetics. Мoscow, p.432. (in Russian)
- 19. Khaikin S. 2006. Neural networks – Moscow–St.- Petersburg– Kiev: ID “Vil’iams”, p.1103 (in Russian)
- 20. Benderskaya E.N. 2013. Nonlinear Trends in Modern Artificial Intelligence: A New Perspective // Beyond AI: Interdisciplinary Aspects of Artificial Intelligence. Topics in Intelligent Engineering and Informatics, Springer, Vol. 4., Рp. 113–124.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6aac4629-749d-4a37-9695-0155896c34d4